

Plant Bowen

Prepared by:

TE TETRA TECH

Monthly Dewatering Results¹

August	2022
--------	------

		Efflu	ent Concent	ration	Permit Limits			
Parameter	Units	Daily Min ²	Daily Avg ²	Daily Max ²	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	0.98	1.01	***	***	***	
рН	SU	6.7	***	7.7	6.0	***	9.0	
Total Suspended Solids	mg/L	ND ³	ND	ND	ND	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	ND	15.0	20.0	

			Deily				
Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Daily Average
		8/1/2022	8/8/2022	8/15/2022	8/22/2022	8/29/2022	Average
Turbidity ⁴	NTU	1.1	1.6	1.4	1.7	2.7	1.7
Total Residual Chlorine ⁴	mg/L	ND	ND	ND	ND	ND	ND
Total Dissolved Solids	mg/L	2390	2040	2050	2380	2400	2252
Ammonia	mg/L	ND	ND	ND	ND	ND	ND
Total Kjeldahl Nitrogen	mg/L	0.64	ND	0.71	0.74	0.76	0.57
Nitrate-Nitrite	mg/L	0.16	0.18	0.19	0.09	0.09	0.14
Organic Nitrogen	mg/L	0.55	ND	0.67	0.69	0.72	0.53
Phosphorus	mg/L	ND	ND	ND	ND	ND	ND
Ortho-Phosphorus	mg/L	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand	mg/L	ND	ND	ND	ND	ND	ND
Hardness	mg/L	1540	1380	1430	1560	1600	1502

_			Efflue	ent Concentr	ation⁵		Calculated Receiving Water Concentration⁵					Water Quality Criteria ⁶		
Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5	Average	A custo ⁷	Chanala ⁷
		8/1/2022	8/8/2022	8/15/2022	8/22/2022	8/29/2022	8/1/2022	8/8/2022	8/15/2022	8/22/2022	8/29/2022		Acute'	Chronic'
Antimony ⁹	μg/L	4.9	6.2	6.2	5.3	5.2	0.0310	0.0392	0.0392	0.0335	0.0329	0.0352	***	640
Arsenic	μg/L	ND	ND	6.0	5.3	5.5	***	***	0.0379	0.0335	0.0348	0.0212	340	150
Cadmium	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	0.94	0.43
Chromium ⁸	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	16	11
Copper	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	7	5
Lead	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	30	1.2
Nickel	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	260	29
Selenium ⁹	μg/L	66.8	88.1	89.9	66.9	63.4	0.4223	0.5570	0.5684	0.4230	0.4008	0.4743	***	5
Thallium9	μg/L	1.9	2.0	2.0	1.8	1.8	0.0120	0.0126	0.0126	0.0114	0.0114	0.0120	***	0.47
Zinc	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	65	65
Mercury	ng/L	0.9	0.8	0.7	1.4	1.6	0.0058	0.0054	0.0045	0.0087	0.0101	0.0069	1400	12

Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.
Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Axg is the arithmetic average of all daily values during the entire month.
ND = Not Detected (below the lab's reporting limit).
Turbidity and total residual choice are monitored continuously. The value reported is the weekly maximum and the daily average is the average of the weekly maximum values reported.
Calculated Receiving Water Concentration shows the effluent concentration at the discharge once in has fully mixed in the receiving waterbody. This value is calculated as a discoved concentration for an appropriate comparison to the numeric water quality criteria, which are also in the discoved form. Consistent with Georgia EPD's not-detectable effluent concentrations are not translated into Calculated Receiving Water Concentrations.
Numeric Water Quality Criteria is the maximum concentration of a parameter (calculated receiving water concentrations.
Acute (short-term) water quality criterion is be compared with the weekly calculated receiving water concentration.
Numeric water quality criterion shows is for Hoexaviant Chromium.
The numeric water quality criterion shows is for Hoexaviant Chromium.
The numeric water quality criteria shown are the chronic (long-term) water quality criteria is and the chronic (long-term) water quality criteria for antimory, selenium, and thalium since these parameters do not have an acute (short-term) water quality criterion.
The numeric water quality criteria shown are the chronic (long-term) water quality criterion shows is for Hoexaviant Chromium.
The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimo

Plant Bowen

Prepared by:

Monthly Instream Results¹

August 2022

		Etowah River ²						
Parameter ³	Units	8/8/2022	8/8/2022	8/15/2022	8/15/2022			
		Upstream	Downstream	Upstream	Downstream			
pН	SU	7.0	7.0	6.8	6.5			
TSS	mg/L	ND^4	ND	ND	ND			
O&G	mg/L	ND	ND	ND	ND			
TRC	mg/L	***	***	***	***			
Turbidity	NTU	3.6	4.9	3.3	3.7			
TDS	mg/L	54	270	60	75			
BOD	mg/L	ND	ND	ND	ND			
Antimony	μg/L	ND	ND	ND	ND			
Arsenic	μg/L	ND	ND	ND	ND			
Cadmium	μg/L	ND	ND	ND	ND			
Chromium	μg/L	ND	ND	ND	ND			
Copper	μg/L	ND	ND	ND	ND			
Lead	μg/L	ND	ND	ND	ND			
Mercury	ng/L	0.9	103.0	1.0	1.3			
Nickel	μg/L	ND	ND	ND	ND			
Selenium	μg/L	ND	ND	ND	ND			
Thallium	μg/L	ND	ND	ND	ND			
Zinc	μg/L	ND	ND	ND	ND			
Ammonia	mg/L	ND	0.12	ND	ND			
TKN	mg/L	ND	ND	0.52	ND			
Nitrate-Nitrite	mg/L	0.37	0.38	0.35	0.31			
Organic Nitrogen	mg/L	ND	ND	ND	ND			
Phosphorus	mg/L	ND	ND	ND	ND			
Ortho-phosphorus	mg/L	ND	ND	ND	ND			
Hardness	mg/L	41	113	40	41			

1 Tetra Tech verifies the correct laboratory analysis methods were used.

2 Etowah River measured 1000ft upstream and 1000ft downstream of the Final Plant Discharge (Outfall 001)

3 Metals results are total recoverable.

4 ND = Non-detect

*** = Not Applicable

mg/L = milligrams per liter = parts per million; $\mu g/L = micrograms$ per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day