HYDROGEOLOGIC ASSESSMENT REPORT (REVISION 01)

ASH POND 3 (AP-3) PLANT HAMMOND FLOYD COUNTY, GEORGIA

FOR

Submitted November 2019 Revised November 2020

November 25, 2020

Geosyntec[▶]

Geosyntec Consultants, 1255 Roberts Blvd, Kennesaw, Georgia, ph. 678.202.9500, fax 678.202.9501

TABLE OF CONTENTS

1.	INT		CTION AND GENERAL SITE AREA						
	1.1	Introduction1							
	1.2	Descri	ption of the Area	2					
	1.3	Topog	raphic Description and Geology	2					
2.	SUE	BSURFA	CE INVESTIGATIONS	4					
	2.1	Drillin	g and Sampling Program	4					
		2.1.1	Georgia Power/LETCO Investigations (1976 and 1977)	4					
		2.1.2	SCS Investigations (2010, 2014, and 2016)	5					
		2.1.3	Golder Investigations (2015)	5					
		2.1.4	Geosyntec Investigations (2017)	6					
	2.2	Geoph	ysical Investigations	6					
	2.3	Hydra	ulic Conductivity Testing	7					
3.	SUE	BSURFA	CE INVESTIGATION RESULTS						
	3.1	Descri	ption of Geologic Conditions						
		3.1.1	Fill	8					
		3.1.2	Terrace Alluvium	8					
		3.1.3	Residuum	9					
		3.1.4	Highly Weathered/Fractured Limestone Bedrock	9					
		3.1.5	Limestone Bedrock	9					
	3.2								
	3.3	Descri	ption of Hydrogeologic Conditions	11					
		3.3.1	Groundwater Levels	12					
		3.3.2	Hydraulic Conductivity of Lithologic Units	12					
		3.3.3	Hydraulic Gradient and Groundwater Flow Velocity	13					
		3.3.4	Description of Confined Aquifers	13					
4.	COl	NCEPTU	JAL SITE MODEL AND GROUNDWATER MODELING	14					
	4.1	Conceptual Site Model 1							
	4.2	Groun	dwater Modeling	15					
		4.2.1	Summary of Model Construction	15					
		4.2.2	Predictive Simulations of the Groundwater Model	17					

	4.3 Rationale for Certified Monitoring Well Network	
5.	GROUNDWATER QUALITY	
	5.1 Detection Monitoring Program	
	5.2 Assessment Monitoring Program	
	5.3 Expansion of the Monitoring Well Network	21
6.	REFERENCES	

LIST OF TABLES

Table 3-1	Boring, Piezometer, and Well Construction Details
Table 3-2	Summary of Hydraulic Conductivity Values
Table 4-1	AP-3 Monitoring Well Network

LIST OF FIGURES

Figure 1-1	Plant Hammond Site Map
Figure 1-2	Site Vicinity and Topography
Figure 2-1	Boring, Piezometer and Groundwater
	Monitoring Well Locations
Figures 3-1A - 3-1D	Geologic Sections
Figure 3-2	Potentiometric Surface Contour Map – June 2020
Figure 4-1	Groundwater Flow Model: Baseline, Pre-Closure Conditions
Figure 4-2	Groundwater Flow Model: Post-Closure Conditions
Figure 4-3	AP-3 Monitoring Well Network

LIST OF APPENDICES

Appendix A	Site Geologic Map
Appendix B	Boring Logs for Locations Shown on Geologic Cross-Sections
Appendix C	Geophysical Investigation Report
Appendix D	Cross Sections Depicting Pre-Closure Conditions
Appendix E	Hydraulic Conductivity Testing Results
Appendix F	Groundwater Model Calculation Package
Appendix G	Boring Logs for AP-3 Monitoring Well Network
Appendix H	Certified Well Survey Data

LIST OF ACRONYMS

AP	Ash Pond
CCR	Coal Combustion Residuals
CFR	Code of Federal Regulation
cm/s	Centimeters per second
EDR	Environmental Data Resources
EVS	Environmental Visualization System
ft bgs	Feet below ground surface
ft/day	Feet per day
ft/ft	Feet per foot
ft²/d/ft	Square feet per day per foot
GA EPD	Georgia Environmental Protection Division
GEL	GEL Geophysics
Geosyntec	Geosyntec Consultants
Golder	Golder Associates
Georgia Power	Georgia Power Company
HAR	Hydrogeologic Assessment Report
K _h	Horizontal Hydraulic Conductivity
$K_{\rm v}$	Vertical Hydraulic Conductivity
LETCO	Law Engineering Testing Company
LIDAR	Light Detection and Ranging
NRMSE	Normalized root mean square error
PVC	Polyvinyl Chloride
SCS	Southern Company Services
Spotlight	Spotlight Geophysical Services
SPT	Standard Penetration Test
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey

1. INTRODUCTION AND GENERAL SITE AREA

1.1 Introduction

Plant Hammond (Plant) is a former four-unit, coal-fired electric generating facility owned and operated by Georgia Power Company (Georgia Power). The Plant is located along the Coosa River, approximately 10 miles west of Rome, Floyd County, Georgia. The physical address of the Plant is 5963 Alabama Highway, Rome, Georgia, 30165. The Plant has been in operation since 1954 and over the course of power generation at the facility, four (4) Coal Combustion Residuals (CCRs) ponds, identified as ponds AP-1, AP-2, AP-3, and AP-4, were utilized. **Figure 1-1** shows a plan view of the Plant. Georgia Power submitted an Integrated Resource Plan to the Georgia Public Service Commission in January 2019 which called for the decertification of Plant Hammond and the four units. The Public Service Commission issued a supporting order for the Plant's closure in July 2019.

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published in the Federal Register requirements regarding the management and disposal of CCR titled "40 CFR Parts 257 and 261: Hazardous and Solid Waste Management System; Disposal of Coal Combustible Residuals from Electric Utilities; Final Rule" (i.e., the USEPA CCR Rule). The USEPA CCR Rule, which became effective on October 19, 2015, established regulations regarding the design, operation, closure, post-closure care, monitoring, and corrective action for inactive, existing and new CCR surface impoundments and existing and new landfills. In November 2016, the Georgia Environmental Protection Division (GA EPD) adopted amendments to the state's Rules for Solid Waste Management that address CCR (GA EPD 391-3-4-.10, i.e., the State CCR Rule). The State CCR Rule incorporates by reference most of the provisions of the USEPA CCR Rule.

AP-3 (or Site) is an inactive CCR surface impoundment located on the northeastern corner of the Plant property. Georgia Power closed AP-3 by capping it in place in second quarter 2018. A Hydrogeologic Assessment Report (HAR) was prepared for AP-3 in November 2018 and included in Section 2 of Part B of the closure permit application submitted the same month. The HAR was completed in accordance with relevant sections of the State and USEPA CCR Rule and provided information regarding the hydrogeologic conditions at AP-3 and supported the development of the monitoring well network for AP-3.

This HAR Revision 01 (HAR Rev. 01) is a stand-alone document, updating and replacing the original HAR. HAR Rev. 01 provides the documents included with the original HAR supplemented with additional hydrogeologic investigation results and groundwater data analysis. These include surface and borehole geophysical investigation results, groundwater modeling results, groundwater quality from the background and detection monitoring program, a most current conceptual site model, and groundwater monitoring well network information at the Site.

1.2 <u>Description of the Area</u>

The Plant occupies about 1,100 acres and is bordered by Georgia Highway 20 (GA-20) on the north, the Coosa River on the south, Cabin Creek and industrial land on the east, and sparsely populated, forested, rural and industrial land on the west. AP-3 is located at the northeast corner of the Plant and is surrounded by GA-20 on the north, AP-1 on the south, Cabin Creek on the east and Pisgah Church on the west.

AP-3 was constructed by Georgia Power in 1973 and 1974 covering a surface area of 25 acres. AP-3 was completely contained by an earthen embankment of approximately 4,000 feet in length and maximum embankment height of 28 feet. The embankment was constructed of sandy lean clay and gravelly sandy clay obtained from within the pond and from an offsite borrow source north of the Plant. The surface area of the pond at the design water surface elevation of 605 feet above mean sea level (ft MSL) was approximately 23 acres. Ash sluicing and placement operations at AP-3 commenced in June 1977. AP-3 was converted into a dry ash disposal area in 1982. In the early 1990's, the pond stopped receiving CCR materials, prior to the effective date of the CCR rule promulgated in April 2015. A notification of intent to initiate closure of the inactive CCR surface impoundment was submitted on December 7, 2015. AP-3 closure activities commenced in 2016 and were conducted in compliance with the USEPA CCR Rule requirements. Final capping of the pond with a low-permeability cover system was completed in the second quarter 2018.

1.3 <u>Topographic Description and Geology</u>

The Plant Hammond site is located in the Valley and Ridge Physiographic Province (Valley and Ridge) of northwest Georgia, which is characterized by Paleozoic sedimentary rocks that have been folded and faulted into the ridges and valleys that gave this region its name. The topography of the valleys and ridges reflects the underlying geology of the variably eroded and folded layers of alternating bedrock units. Ridges are composed of relatively erosion-resistant rocks such as sandstone, conglomerate, or chert

whereas valley floors are underlain by more-easily eroded rocks such as limestone, dolomite, and shale.

Geologic mapping performed at the Plant by Petrologic Solutions, Inc. (Golder, 2018) indicates that the Site is underlain by the middle units of the Cambrian age Conasauga Formation (Ccls), consisting of mostly shaley or argillaceous limestone (referred to as limestone). Subsurface investigations at the Site generally describe the bedrock as limestone or shaley limestone. The geologic map prepared by Petrologic and Golder Associates (Golder) is included in **Appendix A**. Faults in the Valley and Ridge province are thrust faults, where sheets of limestone, sandstone, and shale have been pushed northwestward on top of each other for distances of tens of miles. The Rome fault, just to the north of the Site, is a major thrust fault extending hundreds of miles from Tennessee through Georgia and into Alabama. In the area of the Site, it has uplifted the older middle and lower units of the Conasauga Formation to the northwest and brought it into contact with the younger aged (Silurian, Devonian, and Mississippian) formations to the north. The faulting and displacement along the faults in this region occurred during the Paleozoic Era (approximately 250 million years ago) and are not considered to be active.

Generally, the property slopes gently southeastward towards the Coosa River and Cabin Creek, as shown in the topographic map in **Figure 1-2**. The natural topographic relief across the facility is less than 20 feet, with higher elevations north of the Site towards GA-20 (600 ft, relative to the North American Vertical Datum of 1988), and lower elevations south toward the Coosa River (580 ft). The artificial fill berms around the perimeter of AP-3 reach elevations of approximately 610 ft, with stacked and capped CCR within AP-3 reaching nearly 615 ft. Surface water drainage is oriented generally north to south in the area of the Site, with tributaries, including Cabin Creek, feeding into the westward flowing Coosa River.

2. SUBSURFACE INVESTIGATIONS

The following sections summarize subsurface investigations performed to characterize the hydrogeology beneath and surrounding AP-3, based on historic investigations.

2.1 Drilling and Sampling Program

Data from boring, piezometer, and monitoring well logs generated from multiple subsurface investigations are summarized in the soil and lithologic descriptions discussed in Section 3 below, and are also summarized in a series of geologic cross-sections presented in that section. Historical borings, piezometers, and wells located around AP-3 and nearby portions of AP-1 are shown on **Figure 2-1**. Boring and well construction logs are provided in **Appendix B**.

2.1.1 Georgia Power/LETCO Investigations (1976 and 1977)

Georgia Power and Law Engineering Testing Company (LETCO) performed soil boring, rock coring, piezometer installation, and observation well installation in 1976 and 1977 at AP-3. A total of 60 borings were advanced, and 26 piezometers and six observation wells were installed. These borings were advanced to depths of 7.5 to 100 feet below ground surface (ft bgs) and standard penetration tests (SPTs) were performed. These borings were generally located along the top and at the toe of the perimeter dike of AP-3.

Rock core borings were drilled using an NQ-size wireline core barrel (approximately 3.0inch diameter borehole) and were terminated approximately 30 ft into rock. The purpose of the rock core borings was to aid in defining the contact between the unconsolidated overburden and bedrock, measurement of dips of bedding, jointing, and structural features in the bedrock.

Around mid-July 1977, seepage began occurring at AP-3 from a source within the pond. A rise in water levels were observed in piezometers located west of the embankment. Georgia Power immediately began investigations to determine and mitigate the cause of the seepage. The investigation involved installation of observation wells, rock coring (to define depth of rock, to measure dip angle of rocks, joints and structural features, and to install piezometers screened in the top of rock), permeability testing, dye tracer testing, and analysis of water samples for electrical conductivity and pH. The investigation results indicated that the water loss was likely occurring in the northwest-central portion of the pond through solution cavities in an area where borrow excavation extended close to the rock surface. Documented historical water loss from AP-3 during the early stages of operation (late 1970's) were related to wet-sluicing and the likely presence of solution-enhanced joints and fractures in the underlying bedrock. These conditions were mitigated with repair of the area of water loss and conversion to dry-handling operations at AP-3 in 1982. No additional seeps, water loss, suspected cavities, or other issues have been encountered since the Plant's conversion to dry-handling in 1983. Additionally, the final engineered AP-3 closure measure, including removal of any free water and installation of a low permeability cover, was designed and constructed in a manner to minimize the potential for adverse effects on the structural components of the unit.

2.1.2 SCS Investigations (2010, 2014, and 2016)

Southern Company Services (SCS) conducted multiple site investigations to install groundwater monitoring wells and piezometers at the Plant. During the investigation in March 2010, SCS advanced 3 borings with SPTs to depths varying from 30 to 47 ft bgs to install piezometers at AP-3. During the investigation in 2014, seven wells and piezometers were installed at AP-3, which were advanced to depths of approximately 24 to 36 ft bgs. During the investigation in 2016, an additional two piezometers were advanced to depths of 35 ft bgs and 67 ft bgs at AP-3.

The borings installed by SCS during the 2014 field investigation were advanced using hollow-stem auger drilling methods and wireline rock coring. Boreholes were advanced through the unconsolidated overburden using the hollow-stem augers to the top of the bedrock surface. Piezometers were installed in these boreholes. At locations advanced into bedrock, a larger diameter PVC casing was installed and grouted in place to the top of the bedrock surface and HQ-size (approximately 3.75-inch diameter borehole) rock coring was used to reach target depths.

2.1.3 Golder Investigations (2015)

Golder installed piezometers west of AP-3 and around AP-1 in 2015. Samples were collected for geotechnical analysis during borehole drilling. The depth of piezometers range between 20 and 47.3 ft bgs. Piezometer installation was completed using rotasonic drilling and continuous core collection. Drilling was conducted using a 4-inch diameter core barrel and 6-inch diameter outer casing to advance boreholes to target depths. Piezometers were constructed of Schedule 40 PVC riser and 10-ft pre-packed slotted (0.010-inch) PVC screen. An approximately 2-ft thick seal of time-release coated bentonite pellets was placed above the filter pack, and the remaining annular spaced was grouted using a cement-bentonite grout via the tremie pipe method.

2.1.4 Geosyntec Investigations (2017)

Geosyntec Consultants (Geosyntec) performed field and laboratory investigations at the Site between January and February 2017. Thirteen (13) borings (AP3-B1 through AP3-B11¹) were advanced to various depths into bedrock, using rotasonic drilling methods with a 4-inch diameter core barrel and 6-inch diameter outer casing and continuous core collection. All AP3-B borings (AP3-B-1 through AP3-B-11) were extended into the rock and terminated from 20 to 72 feet into unweathered limestone bedrock. The borings were located along the perimeter dike and within the footprint of AP-3. Borehole geophysical logging was conducted at four locations. Aquifer testing using slug tests and single-packer tests was performed at select locations. Boreholes were abandoned and sealed with bentonite at the conclusion of the field investigation.

2.2 <u>Geophysical Investigations</u>

In February 2017, Spotlight Geophysical Services (Spotlight) and GEL Geophysics (GEL) conducted surface geophysical and borehole geophysical investigations, respectively. The purpose of the geophysical investigations was to characterize lithologies and their physical properties, to determine depths and orientation of bedrock fractures, and to inspect for the presence of solution cavities in the rock underlying the pond.

Spotlight conducted a microgravity survey within the AP-3 footprint to evaluate the presence and lateral extent of subsurface anomalies that could be interpreted as karst features in the underlying bedrock. Additionally, microgravity can be used to identify low-density features within the unconsolidated material. Microgravity data were acquired along nine survey lines within AP-3. The survey lines were oriented in a north-south direction and spaced approximately 100 feet apart with measurement stations marked at 20-foot spacing along the survey lines. Details of the microgravity survey are included in **Appendix C**. The results of the microgravity survey are discussed in Section 3.

GEL performed borehole geophysical logging in four boreholes (AP3-B-2, AP3-B-3, AP3-B-4, and AP3-B-9) located within AP-3. The boreholes were installed by Geosyntec as part of the 2017 investigation (**Figure 2-1**). The borehole geophysical survey included acoustic televiewer, 3-arm caliper, and impeller flow meter. Natural gamma and borehole

¹ Location AP3-B6 consisted of three clustered temporary piezometers (shallow, intermediate and deep), hence the total count of 13 borings.

video logging were conducted in borehole AP3-B-9. The borehole geophysical logging was conducted to further evaluate the no recovery zones or soft zones encountered in the boreholes during drilling. Borehole geophysical data were analyzed for fractures and other features using WellCAD software. The borehole geophysical investigation results are discussed in Section 3. Details of GEL's geophysical logging are included in **Appendix C**.

2.3 <u>Hydraulic Conductivity Testing</u>

Aquifer testing was conducted by LETCO in 1977, SCS in 2014, and Geosyntec in 2017 to evaluate hydraulic conditions in the vicinity of AP-3. Horizontal hydraulic conductivity (K_h) testing was conducted using slug testing for lithologic units above the top of bedrock. Single packer testing was used to estimate K_h for bedrock intervals. K_h values estimated by the Bouwer-Rice method were used to calculate the mean hydraulic conductivity for each lithologic unit. Geosyntec collected undisturbed samples from the residuum for vertical hydraulic conductivity (K_v) testing.

3. SUBSURFACE INVESTIGATION RESULTS

The following sections present a summary of results from the drilling and sampling program, surface and borehole geophysical investigations, and hydraulic conductivity testing.

3.1 Description of Geologic Conditions

Previous subsurface investigations identified five (5) lithologic units in the area of AP-3 in addition to the CCR. From top to bottom, these units are: fill, terrace alluvium, residuum, highly weathered/fractured limestone bedrock, and limestone bedrock. The extent of these units across the site is presented in cross-sections A-A', B-B', C-C', and D-D', presented as **Figures 3-1A** through **3-1D**, respectively. **Table 3-1** summarizes construction details for borings, piezometers, and wells at the Site that are included in the geologic cross-sections. Boring logs for locations shown on the cross-sections are included in **Appendix B**. The cross sections presented on Figures 3-1A through 3-1D illustrate post-closure conditions (i.e., AP-3 capped); the cross sections included with the original HAR, which depicted pre-closure conditions, are included in **Appendix D**.

The units below the CCR are described in the following paragraphs in more detail, noting their composition and thickness. Unit descriptions are mainly from the more recent subsurface investigations (Geosyntec in 2017) and unit thickness ranges were compiled from all borings used to compose the geologic cross-sections.

3.1.1 Fill

Fill material was used to construct the perimeter dikes of AP-3 and was encountered in five AP3-B borings (AP3-B-1 through AP3-B-5). Fill thickness ranged from 17 to 44 feet in AP3-B borings. The fill is composed mostly of lean clay or gravelly lean clay with sand, sometimes identified by the presence of wood or roots. Variable classifications for three samples submitted for laboratory testing, ranged from well-graded sand with silt, to sandy lean clay, to gravelly fat clay with sand.

3.1.2 Terrace Alluvium

The terrace alluvium consists of unconsolidated sediments associated with deposition from the Coosa River and Cabin Creek and was encountered in three of the AP3-B borings (AP3-B-1 through AP3-B-3). Thicknesses of alluvium noted in the geologic cross-sections ranged from 3 to 18.5 ft. Three samples collected from Terrace Alluvium

and submitted for laboratory testing resulted in variable classifications, including clayey sand, sandy clay, and gravelly silty clay.

3.1.3 Residuum

Residual or native soils have been derived from in-place weathering of the limestone bedrock. All 13 of the 2017 Geosyntec borings (AP3-B-1 through AP3-B-11) encountered a residuum unit above the limestone bedrock, with thicknesses noted in the geologic cross-sections ranging from 3 to 27 ft. The residuum was generally described in the field as fat clay with typically only trace amounts of sand, and rarely gravel. Sixteen residuum samples were collected from borings AP3-B-1 through AP3-B-9 for classification purposes. Thirteen of the sixteen samples classified as fat clay, with two of these containing more than 15 percent sand (fat clay with sand, and sandy fat clay). The remaining three samples classified as either sandy lean clay or elastic silt. Laboratory results agreed with field descriptions, with most samples containing no gravel, and most containing less than 3 percent sand.

3.1.4 Highly Weathered/Fractured Limestone Bedrock

The highly weathered/fractured limestone zone occurs as an intermediate weathering stage between the residuum and the unweathered limestone bedrock. Just below the residuum clay layer of completely weathered rock is a gradational zone of varying proportions of clayey residuum and sand, gravel, and cobble-sized angular pieces of partially weathered limestone, grading into a zone of fractured limestone, before grading into unweathered, fresh limestone. The upper highly weathered zone appears more as residuum with various sized rock fragments. The lower zone becomes less clayey with depth and is approximately 5 feet thick.

Samples were collected from the highly weathered/fractured limestone interval from AP3-B-2 and AP3-B-6 for laboratory classification. The AP3-B-6 sample collected from 64 to 65 feet contained a large amount of clay and classified as a sandy lean clay, with approximately 33 percent sand and some gravel. The AP3-B-2 sample was collected from a more gravel rich zone in this unit, classifying as a silty gravel with sand, with approximately 87 percent gravel and sand.

3.1.5 Limestone Bedrock

The limestone bedrock encountered during the Geosyntec field investigation was very similar in composition and texture between borings. Infrequently the limestone had a more massive appearance, but most of the limestone was medium to dark gray with a

slabby or flaggy habit when broken in pieces by the sonic drilling. The limestone was very finely laminated with lighter and darker gray layers and contained interbeds of calcareous shale.

Drilling observations and borehole geophysical logging indicated that the bedrock is generally solid with numerous bedding plane fractures and joints. Solution openings, likely formed by dissolution of the limestone along the bedding planes and joints, were observed in prior investigations. Most of these features were noted in boring logs as filled with clay, mud, or other sediment. The backfilling of the borings advanced during the 2017 geophysical investigation discussed in Section 2.1.4 was routine and easily accomplished using an anticipated volume of bentonite material generally equivalent to the borehole volume. This is indicative that the mud filled soft zones encountered within the unweathered limestone during drilling were consistent with the conceptual site model and attributed to the weathering of shaley limestone layers within the Conasauga Formation along bedding plains and joints, and not representative of extensive open cavities within the bedrock formation.

3.2 <u>Summary of Geophysical Investigation Results</u>

The microgravity data indicated a strong gradient from high to low Bouguer gravity values inward from the edges of AP-3. This gradient is due to low-density ash surrounded by relatively higher-density clay (fill or residuum) and shaley limestone bedrock. Low gravity values are concentrated in the southern half of AP-3, with the lowest values forming a west/southwest to east/northeast trend. The low-gravity anomaly may be associated with a concentration of mud-filled cavities in the shaley limestone. Soil boring AP3-B-9, which encountered mud-filled zones in the bedrock, is located within this low gravity anomaly area. Borings AP3-B-10 and AP3-B-11 were added to the drilling program to further evaluate this low microgravity zone. Consistent with the conceptual model for the site, similar no recovery/soft material zones within the limestone bedrock were encountered at these two borings and no evidence of large open cavities within the bedrock was observed (**Figures 3-1A** through **3-1D**). Small pockets of low gravity were measured north of the berm at the western side of AP-3. Geophysical investigation reports are provided in **Appendix C**.

Borehole geophysics at select locations were used to further evaluate the subsurface conditions and to supplement the microgravity survey. The investigation results from locations AP3-B-2, B-3, B-4, and B-9 indicated that aside from the few solution openings in the borings that are on the order of a few inches up to almost a foot, the limestone bedrock within these borings is solid with numerous bedding plane fractures or partings

GW6581/GA190450

on the scale of only millimeters or less. Comparison of solution openings in other borings indicate that the fractures are not laterally continuous.

3.3 Description of Hydrogeologic Conditions

Hydrogeologic regimes in the Valley and Ridge are characterized by three lithologic units that develop as the solid sedimentary rock weathers in place. From the surface, these units are the residuum, the interface between the soil and the competent bedrock, and the competent unweathered bedrock. These units form an unconfined aquifer and groundwater table contours generally mimic the land surface, with topographic highs forming groundwater divides and perennial streams forming linear lows in the water table.

The Valley and Ridge aquifers are recharged by precipitation falling on outcrop areas, through residual soils to the bedrock, or directly onto bedrocks on valley floors. The precipitation percolates downward through the residuum, slowly infiltrating to the highly weathered/fractured bedrock, and then moving primarily as flow along steeply inclined fractures or solution conduits developed by dissolution of the rock along joints and bedding planes. The rate of this infiltration is generally considered to be very slow, as the clay-rich residuum present across most of the Site retards recharge from the uppermost aquifer into the highly weathered and fractured underlying bedrock.

The uppermost aquifer at AP-3 is an unconfined regional groundwater aquifer that occurs in the residuum and within the highly weathered and fractured bedrock. Based on the June 2020 measurement, depth to groundwater in the uppermost aquifer ranges from approximately 8 ft bgs upgradient of AP-3 to approximately 14 ft bgs downgradient of AP-3. Depth to groundwater on top of the embankment averaged 39 ft bgs. Under capped conditions the water table surface is expected to be a subdued reflection of the topography, with groundwater generally flowing east.

Based on field observations of the residuum, laboratory soil classification of the residuum as fat clay, and low horizontal hydraulic conductivity values (discussed in Section 3.3.2 below), the movement of groundwater in the residuum, and to a degree the highly weathered bedrock zone, can be characterized as low-permeability, porous media flow. Groundwater flow in the underlying bedrock is characterized as fracture flow.

The limestones of the Conasauga Formation may potentially be affected by dissolution of the carbonate rock units present throughout the region. However, in a review of 7.5-minute USGS topographic maps (Rock Mountain, GA and Livingston, GA) of the area

identified as potentially karst in the vicinity of AP-3, the typical surface expressions of karst features, such as sinkholes and sinking or disappearing streams are not exhibited. The presence of few springs and wet-weather seeps in western Floyd County suggests that while karst processes have occurred in the region, large-scale karst dissolution features are not a major influence on local groundwater flow and hydrogeology.

3.3.1 Groundwater Levels

The potentiometric surface map from June 2020 (**Figure 3-2**) presents available groundwater elevations measured from the existing monitoring wells and piezometers in and around AP-3. The June 2020 dataset represents typical groundwater elevation and flow direction noted around AP-3. Groundwater flows generally towards the east with a hydraulic gradient of approximately 0.011 feet per foot (ft/ft), calculated from June 2020 groundwater elevations along the direction of groundwater flow between well pair MW-21 and HGWC-125.

3.3.2 Hydraulic Conductivity of Lithologic Units

Results of hydraulic conductivity testing are summarized in **Table 3-2**. Hydraulic conductivity testing results are included in **Appendix E**. The following paragraphs discuss the estimated hydraulic conductivity values of lithologic units in more detail.

Fill: Eight K_h measurements were available from previous slug testing performed by LETCO (1977). K_h values of the fill ranged from 7.6 x 10^{-7} to 1.0×10^{-5} centimeters per second (cm/s), with a geometric mean of 3.3 x 10^{-6} cm/s.

Terrace Alluvium: Four K_h measurements from slug testing (LETCO, 1977) were available for the terrace alluvium material, ranging from 4.3×10^{-5} to 3.8×10^{-4} cm/s, with a geometric mean of 2.1 x 10^{-4} cm/s.

Residuum: Thirteen (13) slug tests were conducted on wells screened in the residuum: eight by LETCO (1977), four by SCS (2014), and one by Geosyntec (2017). The K_h results ranged from 6.1×10^{-7} to 3.6×10^{-3} cm/s, with a geometric mean of 1.5×10^{-4} cm/s. Geosyntec conducted six permeability tests on Shelby tubes collected from the residuum, yielding K_v measurements ranging from 1.0×10^{-7} to 1.4×10^{-6} cm/s, with a geometric mean of 2.9×10^{-7} cm/s. The K_v for the clay residuum is more than two orders of magnitude lower than the K_h.

Highly Weathered/Fractured Limestone Bedrock: K_h values were available from slug tests conducted by LETCO (1977) on piezometers screened across the bottom of

residuum and the top of bedrock. The K_h values range from 5.1 x 10⁻⁵ to 2.4 x 10⁻² cm/s, with a geometric mean of 9.8 x 10⁻⁴ cm/s.

This zone of fractured limestone just between the highly-weathered residuum/limestone horizon and the unweathered limestone, is likely the zone of predominant groundwater flow in the subsurface. The existing groundwater monitoring network targets this higher flow zone for placement of groundwater well screens (discussed in Section 4.3).

Limestone Bedrock: K_h values were estimated from the single-packer testing conducted in five boreholes and slug testing completed in two piezometers. The K_h values ranged from 5.0×10^{-5} to 2.9×10^{-3} cm/s, with a geometric mean of 4.5×10^{-4} cm/s.

3.3.3 Hydraulic Gradient and Groundwater Flow Velocity

The calculation of groundwater flow velocity was made using representative hydraulic gradients and effective porosity values, and both average and highest observed hydraulic conductivity values. The representative hydraulic gradient for AP-3 in June 2020 is 0.011 ft/ft, measured across the AP-3 site along the direction of groundwater flow between well pair MW-21 and HGWC-125. An effective porosity of 0.15 was used to represent average AP-3 conditions for the highly weathered limestone, based on published ranges for materials (Heath, 1983 and Morris and Johnson, 1967) and professional judgement.

Groundwater flow velocity calculations were performed using the geometric mean value for K_h of the highly weathered/fractured rock of 9.8 x 10⁻⁴ cm/s, or 2.76 feet per day (ft/day), and a highest observed value for K_h of 2.4 x 10⁻² cm/s or 66.6 ft/day, a hydraulic gradient of 0.011 ft/ft, and an assumed effective porosity of 0.15. These calculations yielded a groundwater flow velocity of 7.1 x 10⁻⁵ cm/s or 0.20 ft/day for typical (average) AP-3 conditions, and 1.7 x 10⁻³ cm/s or 4.7 ft/day in highest observed conditions.

3.3.4 Description of Confined Aquifers

No confined aquifers were encountered at AP-3. The uppermost aquifer is considered as unconfined; however, localized, semi-confined conditions may be encountered due to the low-permeability clayey nature of the residual soils, or as a result of perched groundwater or poorly interconnected fracture networks in the bedrock.

4. CONCEPTUAL SITE MODEL AND GROUNDWATER MODELING

4.1 <u>Conceptual Site Model</u>

AP-3 is underlain primarily by five lithologic units; (i) fill material, (ii) terrace alluvium, (iii) residuum, (iv) highly weathered/fractured limestone bedrock, and (v) unweathered limestone bedrock. The uppermost aquifer at AP-3 is an unconfined aquifer that occurs in the residuum and within the highly weathered and fractured bedrock. The aquifer is recharged from infiltration of precipitation and from release of stored water in the lower permeability residuum to the underlying units. Groundwater flow in the uppermost aquifer occurs primarily in the highly weathered limestone and in the solution-enhanced joints in the competent bedrock. Localized preferential flow may also occur in the coarse facies of the terrace alluvium, but this unit is not laterally extensive across AP-3. Groundwater flow direction is controlled primarily by the regional groundwater flow regime. Flow is generally from west to east as shown in the potentiometric surface map in **Figure 3-2**.

Solution openings observed in borings, through drilling and borehole geophysical investigation, likely formed by dissolution of limestone along the bedding planes and joints. The openings are mostly filled with mud and, based on collective review of Site boring logs, are not laterally continuous. Due to the discrete and discontinuous nature of these solution features, linear preferential flow pathways for groundwater are not expected, but rather flow is along the highly weathered bedrock unit atop the underlying competent bedrock.

Dissolution of the limestone bedrock takes place over geologic time, on the order hundreds of thousands of years. The solution features present at the Site are not expected to be actively enlarging. Structural instability due to karst features in similar environments are typically due to a combination of mechanisms that favor displacement of the residuum and surface soils. These mechanisms involve (i) an elevated water table resulting in increased head pressure and downward seepage gradients; (ii) the collapse or erosion of residuum into the solution-enhanced joint system due to the downward seepage forces and gravity; and (iii) the progressive upward propagation of downward soil collapse or erosion under the forces of downward seepage and gravity. When all these mechanisms are present, displacement is possible. However, if one or more of these conditions are mitigated, then these mechanisms are decoupled from the process and the risk of displacement is substantially reduced.

AP-3 was closed in place in compliance with the State CCR Rule and the USEPA CCR Rule. This was accomplished by dewatering sufficiently to remove the free liquids and to an extent to provide a stable base for the construction of the final cover system. The final cover system consists of a 60 mil High Density Polyethylene (HDPE) liner, geo-composite drainage media, a minimum 18-inch protective soil cover, and a 6-inch vegetative cover to establish vegetation. The final closure of AP-3 with this low-permeability cover system eliminates recharge within the footprint of the impoundment. This cover system, along with removal of the free water in nearby AP-1 during closure of that impoundment, is expected to reduce groundwater levels and the hydraulic gradient in the vicinity of AP-3. These engineering measures have also mitigated the factors that would contribute to conditions that may lead to displacement as discussed above.

4.2 <u>Groundwater Modeling</u>

In 2017, Geosyntec created a three-dimensional (3D), steady-state groundwater numerical model of the AP-3 site. The objectives of the numerical groundwater flow modeling were: (i) to construct a steady-state groundwater model of the Site that is calibrated to representative groundwater conditions; and (ii) to simulate groundwater conditions within AP-3 under the final closure scenario. The following sections discuss aspects of the numerical model, which are detailed in the groundwater modeling report provided in **Appendix F**.

4.2.1 Summary of Model Construction

The numerical groundwater flow model is conceptualized as a single aquifer system, composed of ash and 5 geologic layers (i.e., fill, terrace material, residuum, highly weathered rock, and unweathered limestone). The geological layers were further vertically discretized to better evaluate flow in the model domain. The geometric mean of K_h discussed in Section 3.3.2 was used for the fill, and residuum. Based on boring logs and microgravity survey results, K_h of terrace material, highly weathered rock, and highly fractured rock were altered to more appropriately represent the materials (e.g. gravel or fractures that may indicate a greater than average hydraulic conductivity value than suggested by the geometric mean of measured values) found in these zones. The bottom of AP-3 was determined using as-built drawings.

The modular, 3D, finite difference groundwater flow model (MODFLOW), created by the USGS, was used as the modeling program to simulate groundwater flow. Specifically, a Newton formulation of MODFLOW, MODFLOW-NWT (Niswonger, et al., 2011) was utilized because of its capabilities in solving non-linear equations

GW6581/GA190450

Geosyntec >

associated with unconfined aquifers and non-linear boundary conditions, conditions relevant to the Site. The well package, constant head package, and the drain package (Niswonger, 2011) were used to simulate wells, rivers/creeks, and ephemeral steams, respectively. The recharge package (Niswonger, 2011) was used to simulate recharge. Parameter estimation software (PEST) is a model independent parameter estimation program (Watermark Numerical Computing, 1994) that was used during the calibration process to assist in estimating model parameters such as hydraulic conductivity. Since MODFLOW assumes groundwater flow in a porous medium (not fractures), it is necessary to understand the scale of the fractured rock system where groundwater flow is the same as in a porous medium. Therefore, borehole geophysical data were reviewed to evaluate the average open fracture spacing. The evaluation indicated that in the borings where geophysics data were available that the average open fracture spacing varied from 0.25 to 0.65 fractures per foot with an average of 0.45 fractures per foot.

The model domain consists of 344 rows, 344 columns, and 9 vertical layers. The model cell size varies from approximately 10 ft by 10 ft near AP-3 and telescopes outward toward the model boundary (i.e., illustrated on Figure 16, Appendix F). The model boundaries generally consist of (i) a topographic ridge located north and west of the Site; (ii) an unnamed ephemeral stream along the western boundary of AP-2; (iii) the Coosa River south of the Plant; and (iv) Cabin Creek east of the Site. Ground surface elevations were based on a combination of actual ground surface topography from publicly available regional LIDAR data and a Site topographic map. Lithology and layer elevations of the five geologic units were based on boring log descriptions and historical maps of AP-3 construction. Data from these sources were imported into a 3D visualization software Environmental Visualization System (EVS) and interpolated to create surfaces for the top and bottom of each model layer. In general, a minimum model layer thickness of 0.1 ft was applied to areas where interpolation of artificial pinch-outs was created due to a lack of geological data control points, or where physical pinch-outs of geologic units were observed (e.g. terrace material directly beneath AP-3). Groundwater monitoring wells were assigned to model layers based on their screen elevations.

The Coosa River and Cabin Creek were modeled by assigning a constant head boundary condition. The topographic ridge located north and west of the Site was assigned a no flow boundary condition as surface water runoff appears to collect in streams or water bodies on either side of the ridge. AP-1 and AP-2 were both modeled as constant head boundary conditions.

A USGS recharge study performed for the Coosa River basin (USGS, 1996) estimated that the average recharge rate for the entire basin was 13.2 inches per year, but may be as

low as 3.2 inches per year during droughts. These recharge estimates were used as bounds for calibration of recharge within the model domain. For example, the area north of Cabin Creek was assigned a recharge of 13.2 inches per year as it is the headwaters area for Cabin Creek. AP-3 was assigned a recharge rate of 3.7 inches per year. This recharge rate depicts groundwater model baseline conditions during a period when the AP-3 cover system was incomplete (i.e., February 9, 2017). This value was assigned to reflect that rainfall is directed to an inner perimeter stormwater collection system.

The model was calibrated to groundwater elevation targets based on measurements at monitoring wells and surface water locations made by Geosyntec on February 9, 2017. The groundwater flow model was calibrated to the actual on-site groundwater conditions by setting drain conductance to 10 square feet per day per foot $(ft^2/d/ft)$ and then modifying recharge and hydraulic conductivity using PEST version 13.6 (USGS, 1994) to allow the named parameters to vary within measured ranges until the best statistical fit between measured and observed head elevations was obtained. The model was considered calibrated once simulated output closely approximated observed field conditions (e.g., inferred groundwater flow directions, groundwater gradients, groundwater elevations at monitoring wells observed on Site), and when calibration statistics indicated a low residual mean error and a normalized root mean square error (NRMSE) less than 10%. NRMSE is used to measure the difference between observed groundwater values and model predicted values. The smaller the difference between observed and predicted values, the smaller the NRMSE percentage. Typically, groundwater models are considered calibrated when NRMSE is less than 10%.

4.2.2 Predictive Simulations of the Groundwater Model

After calibration, the groundwater model was used to evaluate the predictive scenario for pre-closure conditions (i.e., calibration run) and final closure design at steady state.

4.2.2.1 Scenario 1: Existing Condition (Base Case, Pre-Closure)

This scenario is the calibrated model representing the conditions present at the Site before completion of the cover system, i.e. the "existing condition" at the time of model construction (i.e., 2017). This is shown on **Figure 4-1**.

4.2.2.2 Scenario 2: Install Cover at AP-3; AP-1 at Current Pool Level (Post-Closure)

Scenario 2 represents the conditions at the Site following completion of the cover system at AP-3 but prior to the dewatering and closure of AP-1. Under this scenario, recharge

GW6581/GA190450

over AP-3 was reduced to zero and the constant head boundary condition at AP-1 was set at 585.09 ft to represent the pool water level measured February 9, 2017, as described in the enclosed modeling report.

4.2.2.3 Scenario 3: Install Cover at AP-3 and Drain AP-1 (Post-Closure)

Scenario 3 represents the conditions at the Site following completion of the cover system at AP-3 and the anticipated closure of AP-1. Under this scenario, recharge over AP-3 was reduced to zero and the constant head boundary condition at AP-1 is removed to represent the removal of free water and closure of that unit. The results shown on **Figure 4-2**.

4.3 Rationale for Certified Monitoring Well Network

The groundwater monitoring well network at AP-3 was intended to monitor the uppermost aquifer at the Site and provide early detection of potential releases of CCRimpacted groundwater from the unit. Based on hydrogeologic data collected at the Site, as well as the conceptual site model for groundwater flow, groundwater flow velocities are expected to be significantly higher in the highly-fractured limestone zone than in the overlying low permeability terrace alluvium and residuum. Therefore, the monitoring wells were screened in the highly weathered bedrock and upper portion of the bedrock, where the primary groundwater flow is likely to occur and thus the greatest likelihood of early detection of any releases. If releases were to occur at AP-3, it is anticipated that they would be via diffuse flow through this zone, rather than along linear flow pathways. Therefore, evenly spaced wells in the downgradient direction are appropriate. The location of the wells was selected based on the prevailing groundwater flow direction in the vicinity of AP-3 using groundwater elevations recorded during background monitoring. The monitoring wells included in the compliance monitoring well network are shown in Figure 4-3 and the monitoring well construction details shown in Table 4-Seven wells (i.e., HGWA-1, HGWA-2, HGWA-3, HGWA-43D, HGWA-44D, 1. HGWA-45D, and HGWA-122) are designated for monitoring background conditions upgradient of AP-3 and five wells (HGWC-120, HGWC-121A, HGWC-124, HGWC-125, and HGWC-126) are designated for monitoring conditions downgradient of AP-3. The downgradient monitoring wells provide adequate coverage to detect a potential release from the closed CCR unit. The original well network, consisting of wells HGWA-122, HGWC-120, HGWC-121A, and HGWC-124, was certified by a professional engineer (PE) on April 17, 2019. Wells HGWC-125 and HGWC-126 were added to the network in May 2020 at the request of GA EPD. Wells HGWA-1, HGWA-2, HGWA-3, HGWA-43D, HGWA-44D, and HGWA-45D were incorporated into the AP-3

GW6581/GA190450

compliance well network in September 2020 to supplement HGWA-122 and characterize background groundwater conditions upgradient of AP-3. Of this subset, wells HGWA-1, HGWA-2, and HGWA-3 were installed before January 2016 and also establish background groundwater conditions for AP-1 and AP-2. Wells HGWA-43D, HGWA-44D, and HGWA-45D were installed in August 2020 and screened in bedrock to characterize groundwater conditions within lower portions of the aquifer than that provided by HGWA-1, HGWA-2, HGWA-3, and HGWA-122. Data from these three deeper wells will establish background conditions for AP-1, AP-2, and AP-3.

Any change to the groundwater monitoring network once the permit is issued will be made by a minor modification to the permit pursuant to 391-3-4-.02(4)(b)7. Boring and well construction logs of the wells in the current monitoring well network are provided in **Appendix G**.

5. **GROUNDWATER QUALITY**

Groundwater monitoring-related activities have been performed for AP-3 since August 2016 in support of establishing the detection monitoring program for the CCR unit in accordance with 40 CFR § 257.94. All groundwater sampling was performed in accordance with 40 CFR § 257.93.

5.1 <u>Detection Monitoring Program</u>

Pursuant to 40 CFR § 257.94, Georgia Power established a detection monitoring program for AP-3 which consisted of (i) collecting eight independent samples from the certified monitoring well network to establish a baseline dataset and (ii) conducting the initial semiannual detection monitoring sampling event.

A minimum of eight independent samples were collected from the original AP-3 monitoring well network (HGWA-122, HGWC-120, HGWC-121A, and HGWC-124) between August 2016 and October 2018 and analyzed for Appendix III and IV constituents as part of the background monitoring period pursuant to 40 CFR § 257.94(b). Following background monitoring, the initial detection monitoring event was completed in April 2019, during which groundwater samples were collected from HGWA-122, HGWC-120, HGWC-121A, and HGWC-124 and analyzed for Appendix III constituents according to 40 CFR 257.94(a).

Appendix III data collected during the detection monitoring event were statistically compared against the background values in accordance with 40 CFR § 257.93(h). Detailed discussion of the detection monitoring program is presented in the *2019 Annual Groundwater Monitoring and Corrective Action Report* for AP-3, submitted to GA EPD in July 2019 (Geosyntec, 2019).

5.2 Assessment Monitoring Program

Because statistically significant increases of Appendix III constituents over background prediction limits were identified during the initial detection monitoring event, Georgia Power initiated an assessment monitoring program for groundwater at AP-3. Pursuant to 40 CFR 257.95, samples were collected from HGWA-122, HGWC-120, HGWC-121A, and HGWC-124 in August 2019 and analyzed for Appendix IV constituents. The first and second semiannual assessment monitoring events were conducted in October 2019 and March 2020. During the semiannual reporting period for the March 2020 event, Georgia Power established groundwater protection standards (GWPS) for Appendix IV constituents in accordance with 40 CFR § 257.95. Statistical evaluation of the October

2019 assessment monitoring data indicated the presence of statistically significant levels (SSL) of lithium and molybdenum in exceedance of the state GWPS, but not the federal GWPS, in well HGWC-120. A similar statistical analysis of the March 2020 groundwater data identified an SSL of molybdenum in HGWC-120 above the state GWPS and below the federal GWPS; lithium was not identified as an SSL for this event. Details of these sampling events and statistical analyses are provided in the report *2020 Annual Groundwater Monitoring & Corrective Action Report – Plant Hammond Ash Pond 3 (AP-3)* (Geosyntec, 2020).

Pursuant to 40 CFR § 257.96, an assessment of corrective measures (ACM) was initiated for AP-3 on July 9, 2020. An ACM Report will be subsequently prepared for AP-3 and submitted to GA EPD in December 2020. In accordance with 40 CFR § 257.96(b), groundwater continues to be monitored at AP-3 under the assessment monitoring program while the ACM phase is implemented.

5.3 Expansion of the Monitoring Well Network

In a closure permit review letter dated April 28, 2020, GA EPD requested the reclassification of an existing piezometer to become a compliance monitoring well. In response, Georgia Power has incorporated piezometer MW-31 into the compliance well network and renamed the well id to "HGWC-126". GA EPD's second request was for Georgia Power to install a compliance monitoring well between HGWC-120 and HGWC-121A, resulting in the installation of well HGWC-125 in May 2020. Separate from the GA EPD requests, Georgia Power installed additional compliance wells upgradient of AP-3 in August 2020. Wells HGWA-43D, HGWA-44D, and HGWA-45D were installed and screened in bedrock to characterize groundwater conditions within lower portions of the aquifer. The data will supplement groundwater data from the background wells screened in the shallower residuum and highly weathered bedrock. The locations of these new wells in relation to the existing compliance monitoring well network are shown on **Figure 4-3**. The boring and well construction logs for the current well network are included in **Appendix G**. Well survey data certified by a Georgia-registered professional surveyor are included in **Appendix H**.

Pursuant to 40 CFR § 257.94(b), eight independent groundwater samples (i.e., background monitoring events) should be collected from the new compliance wells to statistically establish background conditions in the wells. For wells HGWC-125 and HGWC-126, the first of eight independent sampling events occurred in May 2020; for wells HGWA-43D, HGWA-44D, and HGWA-45D the first of eight sampling events occurred in September 2020.

6. **REFERENCES**

- Georgia Rules and Regulations (2018). Rule Subject 391-3-4, Solid Waste Management. Revised March 28, 2018.
- Geosyntec Consultants (2019). 2019 Annual Groundwater Monitoring & Corrective Action Report, Georgia Power Company, Plant Hammond Ash Pond 3 (AP-3). July 2019.
- Geosyntec Consultants (2020). 2020 Annual Groundwater Monitoring & Corrective Action Report, Georgia Power Company, Plant Hammond Ash Pond 3 (AP-3). July 2020.
- Golder Associates (2018). *Geologic and Hydrogeologic Report Plant Hammond*. November 2018.
- Heath, R.C. (1983). Basic ground-water hydrology, U.S. Geological Survey Water-Supply Paper 2220, 86p.
- LETCO (Law Engineering Testing Company) (1977). "Investigation of Water Loss." Prepared for Georgia Power Company, Atlanta, GA.
- Morris, D.A. and A.I. Johnson (1967). Summary of hydrologic and physical properties of rock and soil materials as analyzed by the Hydrologic Laboratory of the U.S. Geological Survey, U.S. Geological Survey Water-Supply Paper 1839-D, 42p.
- Niswonger, R.G., Panday, Sorab, and Ibaraki, Motomu, (2011). MODFLOW-NWT, A Newton formulation for MODFLOW-2005: U.S. Geological Survey Techniques and Methods 6-A37, 44 p.
- U.S. Environmental Protection Agency (USEPA) (2015) "40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule," (referred to as the USEPA CCR (2015) rule).
- U.S. Geological Survey. Rock Mountain Quadrangle, Georgia. 1:24,000. 7.5 Minute Series. Reston, VA: United States Department of the Interior, USGS, 2014.
- U.S. Geological Survey. Livingston Quadrangle, Georgia. 1:24,000. 7.5 Minute Series. Reston, VA: United States Department of the Interior, USGS, 2014.

GW6581/GA190450

- U.S. Geological Survey, 1994. User's guide for MODPATH/MODPATH-PLOT, Version 3; a particle tracking post-processing package for MODFLOW, the U.S. Geological Survey finite-difference ground-water flow model. Open File Report 94-464.
- U.S. Geological Survey, 1996. Groundwater Resources of the Coosa River Basin in Georgia and Alabama-Subarea 6 of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa River Basins. Open File Report 96-177.
- Watermark Numerical Computing, 1994. PEST Model Independent Parameter Estimation.

TABLES

Table 3-1Boring, Piezometer, and Well Construction DetailsPlant Hammond AP-3, Floyd County, Georgia

Boring/Well ID (Historical ID) ^{(3), (4)}	Purpose	Northing ⁽¹⁾	Easting ⁽¹⁾	Date Installed	Top of Screen Elevation ⁽²⁾ (ft NAVD88)	Bottom of Screen Elevation ⁽²⁾ (ft NAVD88)	Well Depth (ft bgs)	Screened Media
AP1-MW-6	MW	1548381.22	1941686.57	11/4/2014	559.30	549.30	29.90	Terrace Material, highly weathered Limestone
AP3-B-10	SB	1550500.71	1942345.89	2/16/2017	-	-	-	NA
AP3-B-11	SB	1550545.31	1942643.26	2/16/2017	-	-	-	NA
AP3-B4	MW	1550709.19	1942920.34	2/2/2017	554.89	549.89	77.00	Limestone
AP3-B-6	MW	1550530.98	1942124.44	1/31/2017	528.76	518.76	89.00	Limestone
AP3-B-7	MW	1551042.74	1942387.32	2/10/2017	520.86	515.86	90.00	Limestone
AP3-B-8	MW	1551323.29	1942521.40	2/7/2017	522.09	517.09	88.00	Limestone
AP3-B-9	SB	1550662.39	1942654.24	2/9/2017	_	-	_	NA
AP3-MW-23	MW	1551641.44	1942496.83	11/24/2014	563.10	553.10	29.50	Highly weathered Limestone/Limestone
AP3-MW-25	MW	1550634.52	1943060.52	11/12/2014	556.90	546.90	35.40	Residuum, Limestone
AP3-MW-26	MW	1550383.19	1942809.85	11/12/2014	563.80	553.80	31.10	Residuum, highly weathered Limestone and Limestone
MW-21	MW	1550270.15	1941809.76	12/3/2014	570.40	560.40	23.60	Residuum, highly weathered limestone, and limestone
MW-32	MW	1551092.83	1943021.47	11/26/2019	559.30	549.30	33.80	Residuum, highly weathered limestone, and limestone
MW-39	MW	1551111.45	1943089.26	3/16/2020	564.93	554.93	23.00	Residuum, highly weathered limestone, and limestone
MW-41	MW	1551158.16	1943196.47	5/18/2020	563.20	553.20	22.00	Residuum (clay)
MW-46D	MW	1551056.48	1942929.10	8/18/2020	513.92	503.92	99.50	Limestone
HGWA-1	MW	1550423.32	1940770.00	12/3/2014	573.12	563.12	29.70	Highly weathered shaley limestone, competent shaley limestone
HGWA-2	MW	1549796.87	1939845.15	12/2/2015	570.29	560.29	25.00	Terrace alluvium
HGWA-3	MW	1549794.41	1939833.39	12/2/2015	553.23	543.23	42.00	Highly weathered shaley limestone
HGWA-43D	MW	1550422.85	1940753.80	8/26/2020	544.08	534.08	58.25	Limestone
HGWA-44D	MW	1550409.13	1940756.18	8/25/2020	491.76	481.76	110.50	Limestone
HGWA-45D	MW	1551157.68	1941907.54	8/19/2020	535.23	525.23	60.00	Limestone
HGWA-122 (AP3-MW-22)	MW	1551251.42	1941887.11	11/20/2014	570.70	560.70	24.90	Residuum, highly weathered Limestone and Limestone
HGWC-121A	MW	1550607.97	1943030.44	7/17/2017	556.71	546.71	35.60	Residuum, highly weathered Limestone and Limestone
HGWC-10 (AP1C-4)	MW	1551157.68	1941907.54	12/3/2015	566.66	556.66	20.00	Terrace Material
HGWC-120 (P20)	MW	1551067.24	1942926.62	6/27/2016	548.83	538.83	64.01	Limestone
HGWC-124 (AP3-MW-24)	MW	1551624.93	1942781.05	11/13/2014	557.80	547.80	32.50	Highly weathered Limestone/Limestone
HGWC-125	MW	1550821.41	1942962.87	5/4/2020	556.03	546.03	60.00	Residuum, partially weathered limestone
HGWC-126 (MW-31)	MW	1550422.03	1942689.40	11/26/2019	552.72	542.72	66.00	Highly weathered Limestone/Limestone

Table 3-1Boring, Piezometer, and Well Construction DetailsPlant Hammond AP-3, Floyd County, Georgia

Boring/Well ID (Historical ID) ^{(3), (4)}	Purpose	Northing ⁽¹⁾	Easting ⁽¹⁾	Date Installed	Top of Screen Elevation ⁽²⁾ (ft NAVD88)	Bottom of Screen Elevation ⁽²⁾ (ft NAVD88)	Well Depth (ft bgs)	Screened Media
P18	PZ	1551449.11	1942253.83	8/2/1977	569.30	564.30	45.00	Terrace Material, Residuum
P21	PZ	1551052.327	1942936.178	8/1/1977	562.90	557.90	51.00	Terrace Material
P22	PZ	1551045.17	1942916.44	8/4/1977	576.20	571.20	38.00	Highly weathered Limestone
P-5L	MW	1551480.44	1942237.23	2/8/1977	562.60	557.60	41.50	Residuum, highly weathered Limestone
P-5U	MW	1551480.44	1942237.23	2/8/1977	583.10	578.10	21.00	Terrace Material
Р6	PZ	1551519.30	1942219.87	2/8/1977	566.20	561.20	23.20	Residuum, highly weathered Limestone
P8	PZ	1551079.751	1943011.072	2/9/1977	558.80	553.80	29.10	Highly weathered Limestone
Z12	SB	1550982.93	1942797.73	12/21/1976	-	-	-	NA
Z14	SB	1551046.92	1942114.19	12/17/1976	-	-	-	NA
Z16	SB	1551121.60	1942011.91	12/28/1976	-	-	-	NA
Z18	SB	1551522.59	1942439.61	12/27/1976	-	-	-	NA
Z18A	SB	1551522.59	1942439.61	12/27/1976	-	-	-	NA
Z18B	SB	1551522.59	1942439.61	1/20/1977	-	-	-	NA
Z25	SB	1550506.58	1941971.60	1/28/1977	-	-	-	NA
Z26	SB	1550312.71	1941950.33	1/21/1977	-	-	-	NA
Z5	SB	1551299.18	1942235.52	12/20/1976	-	-	-	NA

Notes:

ID = identification

ft = feet

NA = not applicable MW = Monitoring Well

bgs = below ground surface

PZ = Piezometer SB = Soil Bore

(1) Coordinates in North American Datum (NAD) 1983, State Plane, Georgia West Zone, feet.

(2) Vertical elevations are in feet relative to the North American Vertical Datum (NAVD) 1988.

(3) Wells HGWA-1, HGWA-2, HGWA-3, HGWA-122, HGWC-120, HGWC-121A, HGWC-124, HGWC-125, HGWC-126, MW-21, MW-23, MW-39, and MW-41 were re-surveyed May 11-14, 2020.

(4) Wells HGWA-43D, HGWA-44D, HGWA-45D and MW-46D were surveyed September 1-2, 2020.

Table 3-2Summary of Hydraulic Conductivity ValuesPlant Hammond AP-3, Floyd County, Georgia

Lithologic Unit	Range of K _h or K _v (cm/s)	Geometric Mean K _h or K _v (cm/s)							
Horizontal Hydraulic Conductivity	Horizontal Hydraulic Conductivity								
Ash	4.13 x 10 ⁻²	4.13 x 10 ⁻²							
Fill	7.62 x 10^{-7} to 1.02 x 10^{-5}	3.33 x 10 ⁻⁶							
Terrace Alluvium	4.27 x 10^{-5} to 3.76 x 10^{-4}	2.14 x 10 ⁻⁴							
Residuum	$6.10 \ge 10^{-7}$ to $3.57 \ge 10^{-3}$	1.47 x 10 ⁻⁴							
Highly Weathered/Fractured Limestone	5.08 x 10^{-5} to 2.35 x 10^{-2}	9.76 x 10 ⁻⁴							
Unweathered Limestone	4.98×10^{-5} to 2.91×10^{-3}	4.46 x 10 ⁻⁴							
Vertical Hydraulic Conductivity									
Residuum	$1.00 \ge 10^{-7}$ to $1.40 \ge 10^{-6}$	2.91 x 10 ⁻⁷							

Notes:

K_h - horizontal hydraulic conductivity

 K_v - vertical hydraulic conductivity

cm/s - centimeters per second

Table 4-1 AP-3 Monitoring Well Network Plant Hammond AP-3, Floyd County, Georgia

Well ID	Northing ⁽¹⁾	Easting ⁽¹⁾	Ground Surface Elevation ⁽²⁾ (ft NAVD88)	Top of Casing Elevation (ft NAVD88)	Top of Screen Elevation (ft NAVD88)	Bottom of Screen Elevation (ft NAVD88)	Well Depth ⁽³⁾ (ft BTOC)	Monitoring Designation	Screened Media
HGWA-1	1550423.32	1940770.00	592.32	595.21	573.12	563.12	32.49	Upgradient	Highly weathered shaley limestone, competent shaley limestone
HGWA-2	1549796.87	1939845.15	585.29	587.92	570.29	560.29	27.95	Upgradient	Terrace alluvium
HGWA-3	1549794.41	1939833.39	585.23	587.74	553.23	543.23	44.51	Upgradient	Highly weathered shaley limestone
HGWA-43D	1550422.85	1940753.80	592.08	595.08	544.08	534.08	61.25	Upgradient	Limestone
HGWA-44D	1550409.13	1940756.18	592.01	594.79	491.76	481.76	113.28	Upgradient	Limestone
HGWA-45D	1551157.68	1941907.54	584.08	586.95	535.23	525.23	62.87	Upgradient	Limestone
HGWA-122	1551251.42	1941887.11	585.04	587.90	570.54	560.54	26.96	Upgradient	Residuum, highly weathered limestone, and limestone
HGWC-120	1551067.24	1942926.62	602.83	605.82	548.83	538.83	66.60	Downgradient	Limestone
HGWC-121A	1550607.97	1943030.44	582.31	584.69	556.71	546.71	37.98	Downgradient	Residuum, highly weathered limestone, and limestone
HGWC-124	1551624.93	1942781.05	579.80	582.52	557.80	547.80	34.32	Downgradient	Highly weathered limestone and limestone
HGWC-125	1550821.41	1942962.87	605.70	608.89	556.20	546.20	62.39	Downgradient	Highly weathered limestone
HGWC-126	1550422.03	1942689.40	608.72	611.24	552.72	542.72	68.52	Downgradient	Highly weathered limestone and limestone

Notes:

ft = feet

ft BTOC = feet below top of casing

(1) Coordinates in North American Datum (NAD) 1983, State Plane, Georgia West Zone, feet. Surveyed May 11-14, 2020. Wells HGWA-43D, HGWA-44D, HGWA-45D, and MW-46D surveyed September 1-2, 2020.

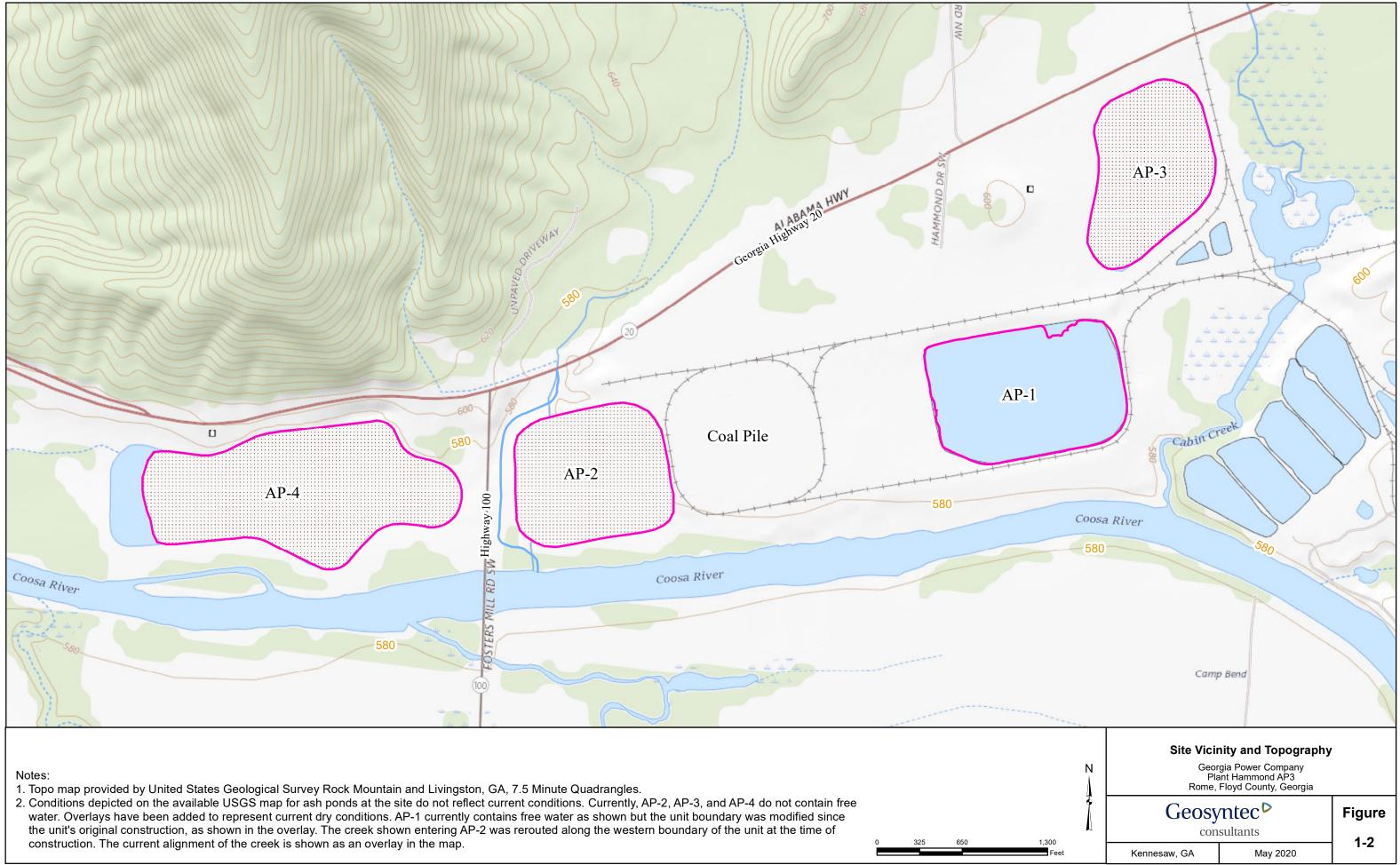
(2) Vertical elevations are in feet relative to the North American Vertical Datum (NAVD) 1988. "Ground surface" elevation defined at the survey nail installed within the well pad. Surveyed May 11-14, 2020. Wells HGWA-43D, HGWA-44D, HGWA-45D, and MW-46D surveyed September 1-2, 2020.

(3) Total well depth accounts for sump if data provided on well construction logs.

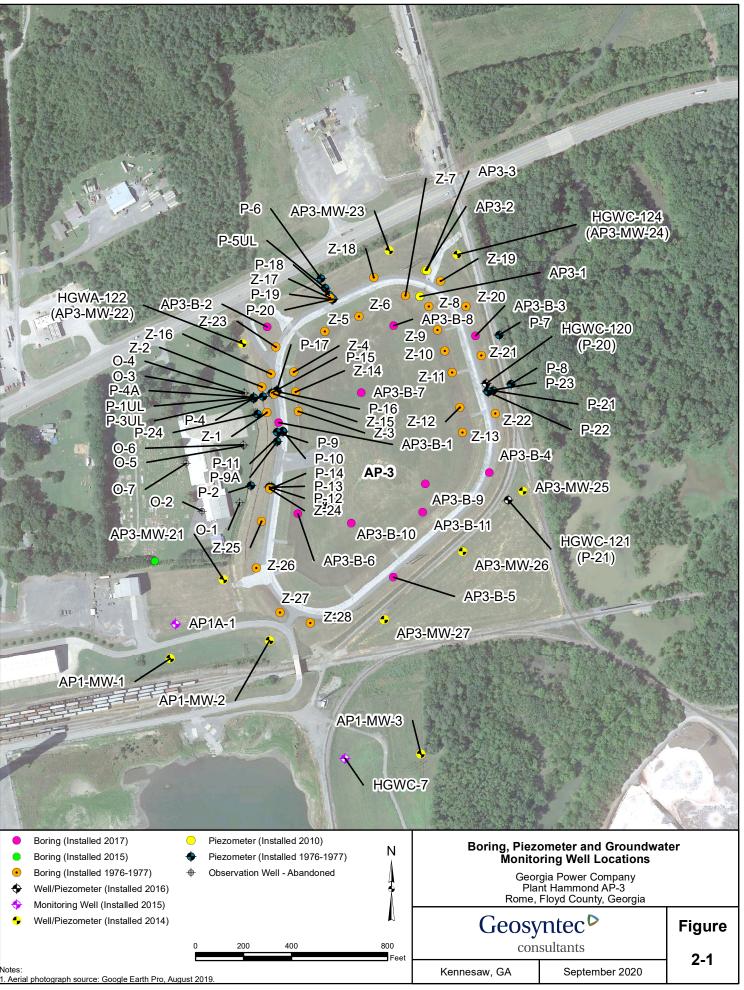
FIGURES

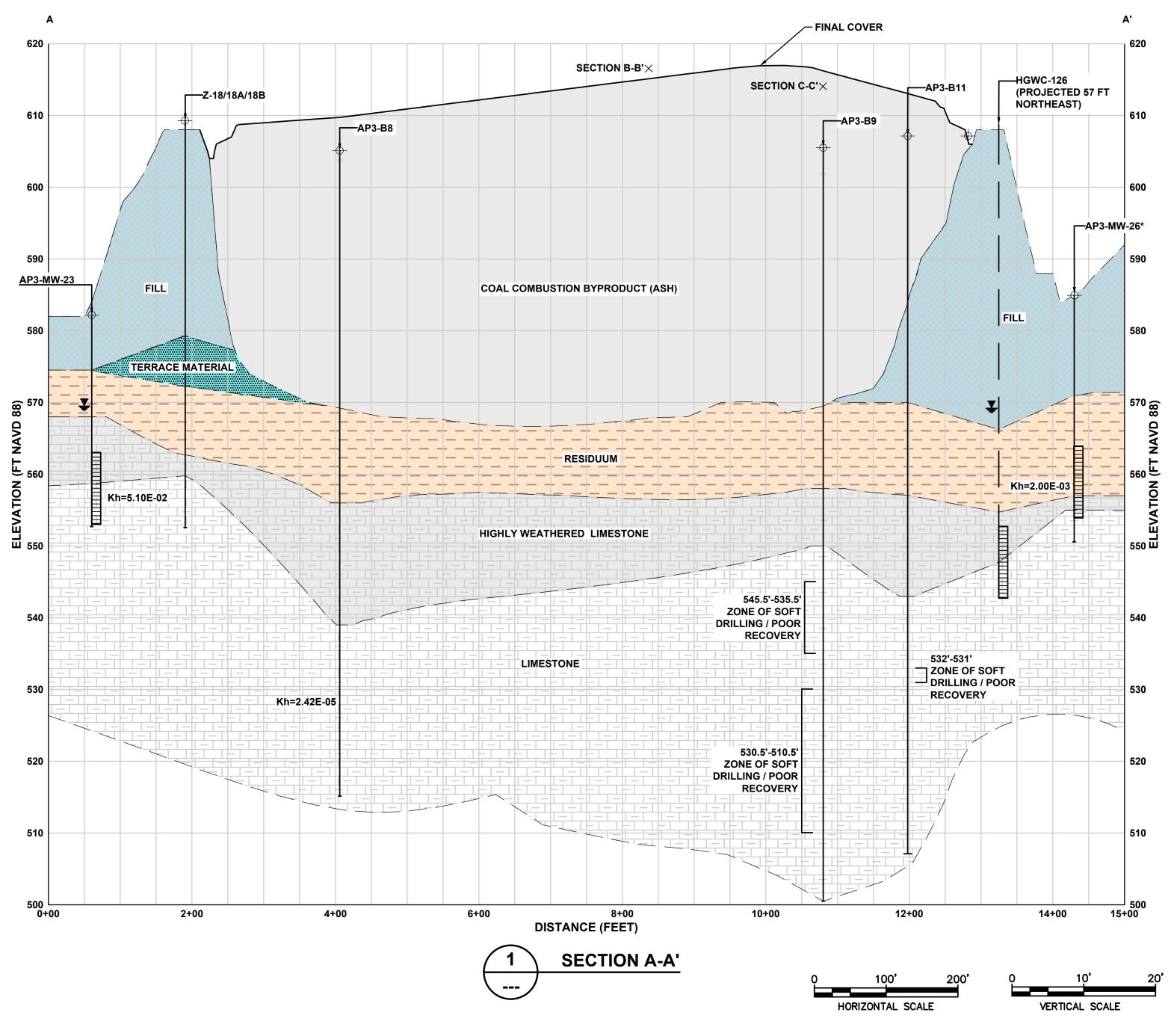
Notes: 1. Aerial photograph source: Google Earth Pro, August 2019. Geosyntec^D consultants

Figure


1-1

Kennesaw, GA


1,200


Feet

September 2020

N:\GA Power\Plant Hammond GW Mon-Rpt Proposal\Siting and Hydrogeo Reports\AP-4\GIS\mxd\Figure2-1_Topo_Map.mxd 5/12/2020 1:27:49 PM

NOTES:

LEGEND

SOIL BO	ORING (DASHED	OWHERE PR	OJECTED)

, ,	GROUNDWATER ELEVATION (SEPTEMBER 14, 2020)
	SCREEN INTERVAL
	FINAL COVER

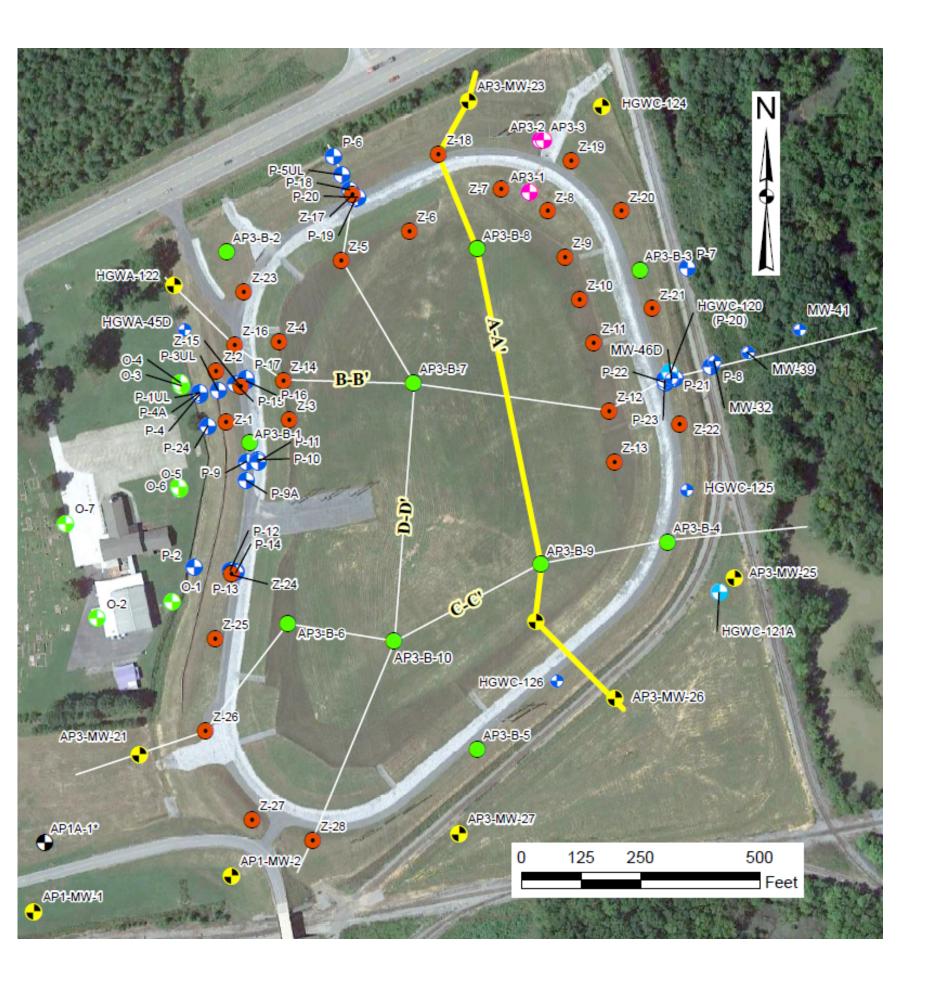
SOIL LAYER DESCRIPTIONS COAL COMBUSTION BYPRODUCT (ASH) FILL (LEAN CLAY OR GRAVELLY LEAN CLAY WITH SAND) TERRACE MATERIAL (CLAYEY SAND, SANDY CLAY, GRAVELLY SILTY CLAY) RESIDUUM (LEAN CLAY, LEAN CLAY WITH GRAVEL, FAT CLAY

HIGHLY WEATHERED LIMESTONE (CLAYEY GRAVEL, SANDY LEAN CLAY WITH GRAVEL)

LIMESTONE

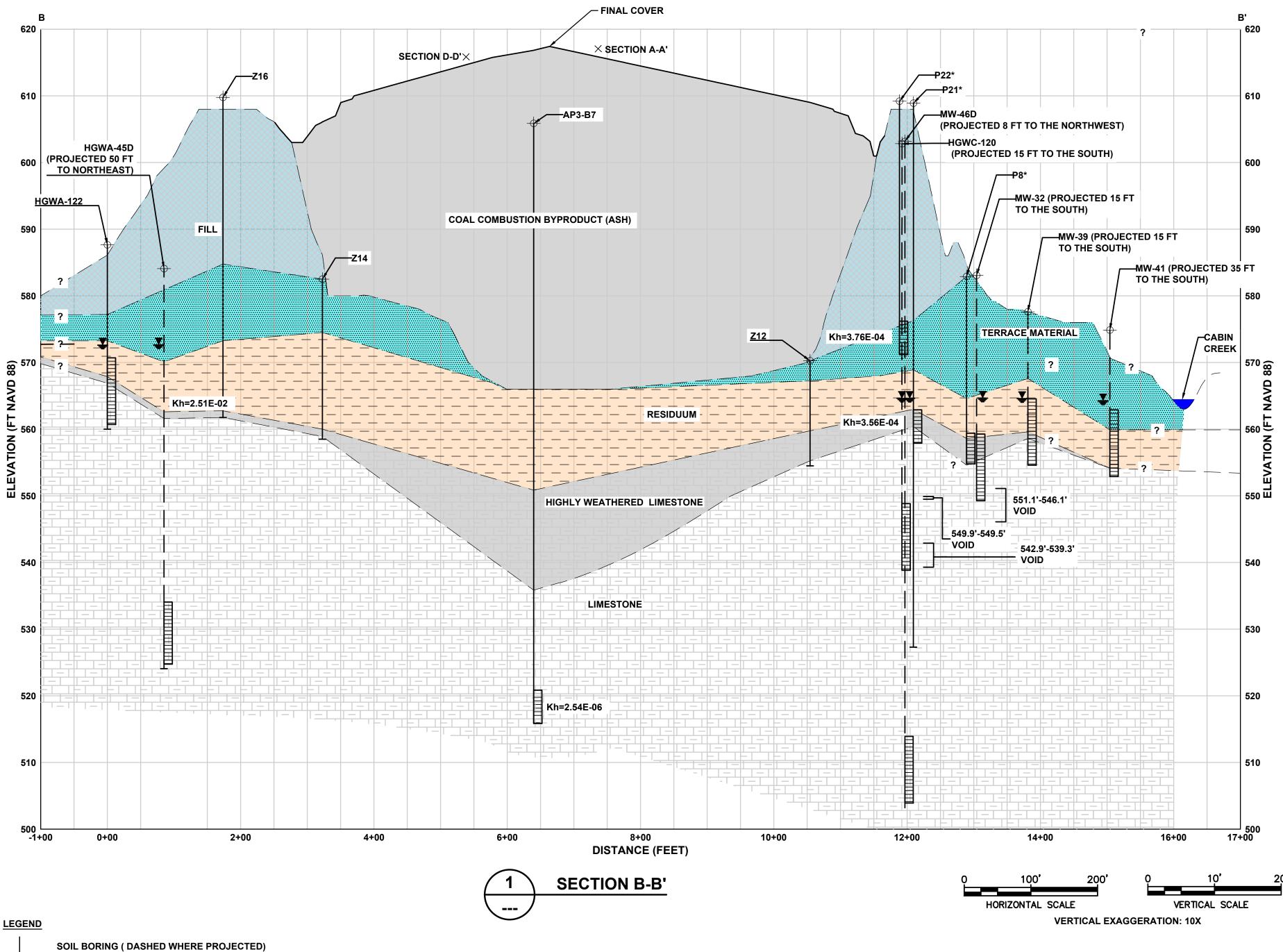
VERTICAL EXAGGERATION: 10X

1. SUBSURFACE LITHOLOGIC ELEVATIONS BETWEEN BORINGS ARE INTERPRETED BASED ON AVAILABLE INFORMATION AND SHOULD BE CONSIDERED APPROXIMATE.

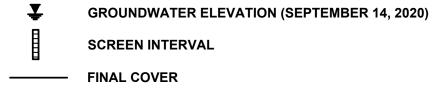

2. ELEVATIONS OF LITHOLOGIC UNITS WERE ESTIMATED BASED ON GROUND SURFACE ELEVATIONS OF SOIL BORINGS.

3. BORING LOGS AND HYDROGEOLOGIC INFORMATION FOR SOIL BORINGS Z1 THROUGH Z28 AND P1 THROUGH P24 (1976 & 1977), AP3-1, AP3-2, AND AP3-3 (2010), MONITORING WELLS AROUND ASH PONDS AP1 AND AP3 (2014), P20 AND P21 (2016) WERE PROVIDED BY SOUTHERN COMPANY SERVICES. SOIL BORINGS/PIEZOMETERS AP3-B1 THROUGH AP3-B11 WERE INSTALLED BY GEOSYNTEC CONSULTANTS IN FEBRUARY 2017. MONITORING WELL HGWC-126 WAS INSTALLED BY GEOSYNTEC CONSULTANTS IN 2019.

4. HORIZONTAL HYDRAULIC CONDUCTIVITY (Kh) IN CM/SEC. VERTICAL HYDRAULIC CONDUCTIVITY (Kv) IN CM/SEC.


5. EXISTING TOPOGRAPHIC MAP USED IN THE GEOLOGIC SECTION WAS BASED ON DRAWING NUMBER ES1844S1 PROVIDED BY SOUTHERN COMPANY SERVICES.

6. THE FINAL COVER CONSISTS OF A 60 MIL HDPE (HIGH DENSITY POLYETHYLENE) LINER, GEOCOMPOSITE DRAINAGE MEDIA, A MINIMUM 18-INCH PROTECTIVE SOIL COVER, AND A 6-INCH VEGETATIVE LAYER TO ESTABLISH VEGETATION.


KEY MAP

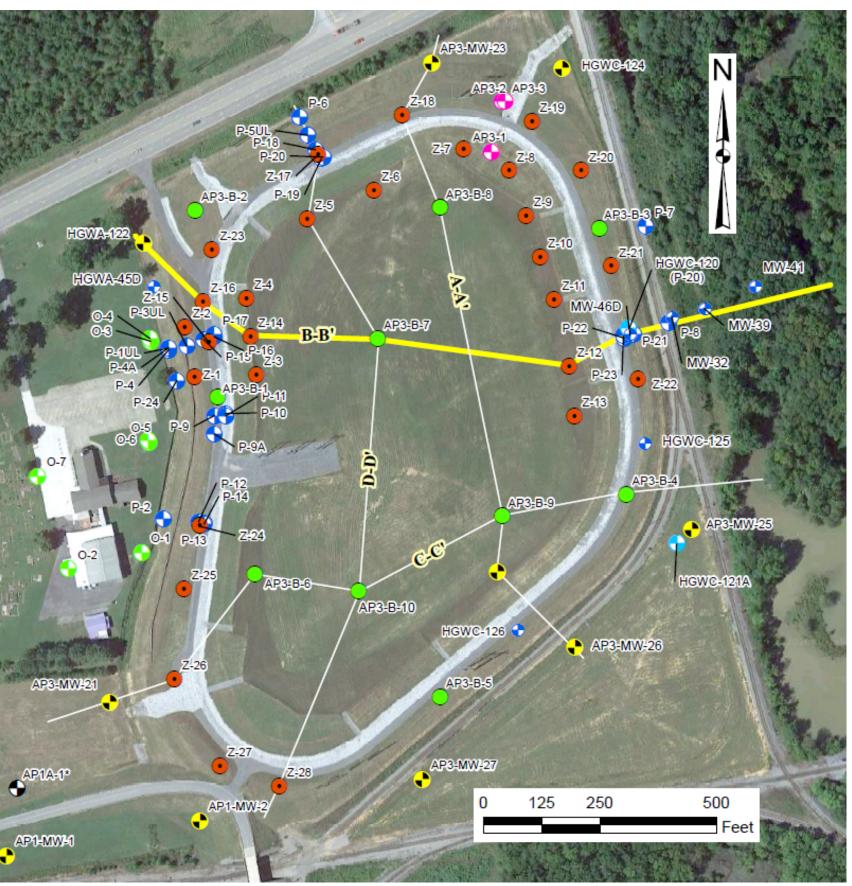
Geosyntec⊳	FIGURE
Georgia Power Company Plant Hammond AP3 Floyd County, Rome, Georgia	
Geologic Section A-A'	

LEGEN	D

	NO	TES:
	1.	SUBSUI INFORM
	2.	ELEVAT SOIL BO
SOIL LAYER DESCRIPTIONS	_	
COAL COMBUSTION BYPRODUCT (ASH)	3.	BORING THROUG AP1 AN
FILL (LEAN CLAY OR GRAVELLY LEAN CLAY WITH SAND)		BORING FEBRUA
TERRACE MATERIAL (CLAYEY SAND, SANDY CLAY, GRAVELLY SILTY CLAY)	4.	HORIZO CM/SEC
RESIDUUM (LEAN CLAY, LEAN CLAY WITH GRAVEL, FAT CLAY OR SANDY FAT CLAY)	5.	EXISTIN ES1844
HIGHLY WEATHERED LIMESTONE (CLAYEY GRAVEL, SANDY LEAN CLAY WITH GRAVEL)	6	

LIMESTONE _

URFACE LITHOLOGIC ELEVATIONS BETWEEN BORINGS ARE INTERPRETED BASED ON AVAILABLE RMATION AND SHOULD BE CONSIDERED APPROXIMATE.

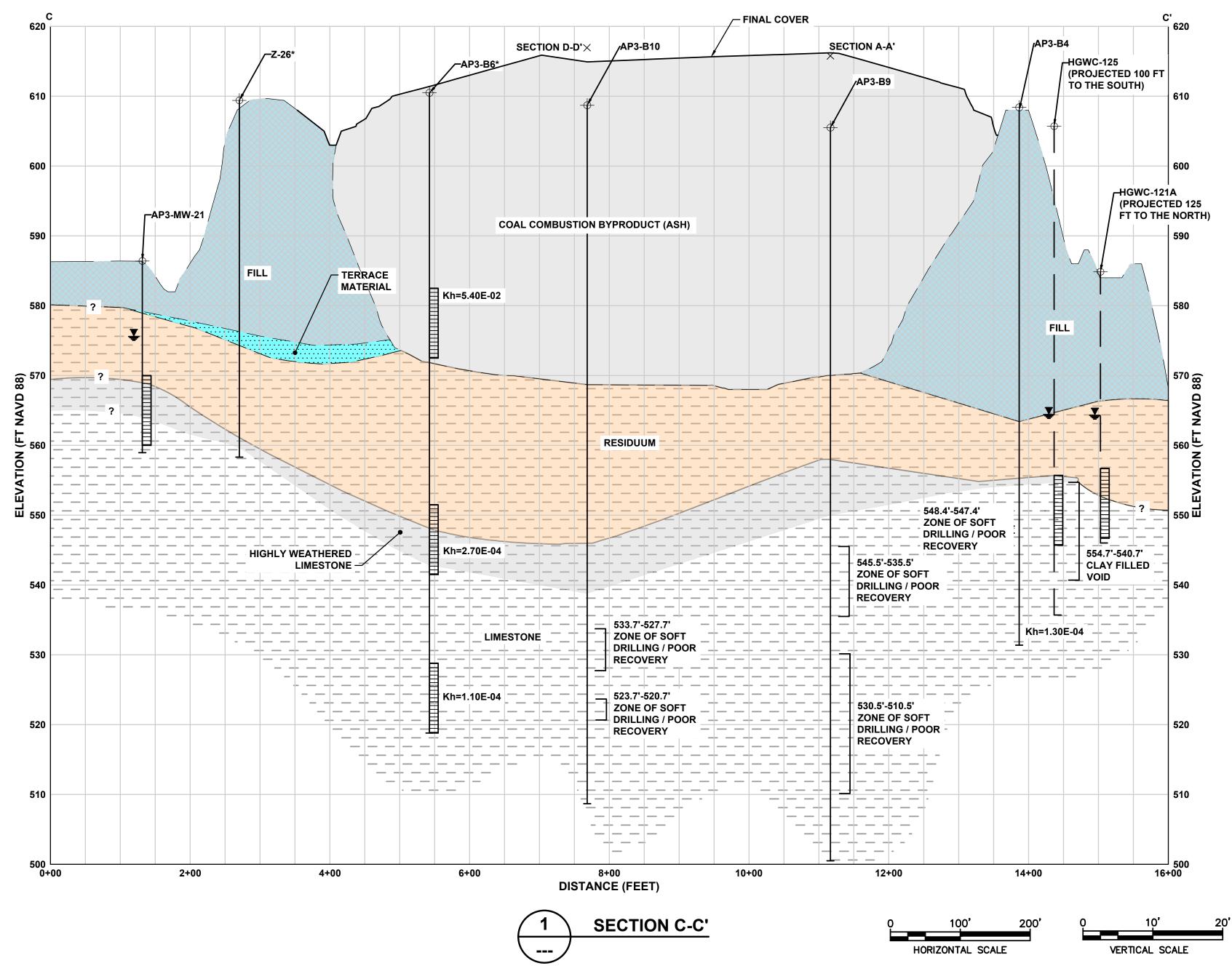

ATIONS OF LITHOLOGIC UNITS WERE ESTIMATED BASED ON GROUND SURFACE ELEVATIONS OF BORINGS.

NG LOGS AND HYDROGEOLOGIC INFORMATION FOR SOIL BORINGS Z1 THROUGH Z28 AND P1 DUGH P24 (1976 & 1977), AP3-1, AP3-2, AND AP3-3 (2010), MONITORING WELLS AROUND ASH PONDS AND AP3 (2014), P20 AND P21 (2016) WERE PROVIDED BY SOUTHERN COMPANY SERVICES. SOIL NGS/PIEZOMETERS AP3-B1 THROUGH AP3-B11 WERE INSTALLED BY GEOSYNTEC CONSULTANTS IN UARY 2017.

ZONTAL HYDRAULIC CONDUCTIVITY (Kh) IN CM/SEC. VERTICAL HYDRAULIC CONDUCTIVITY (Kv) IN C.

ING TOPOGRAPHIC MAP USED IN THE GEOLOGIC SECTION WAS BASED ON DRAWING NUMBER 44S1 PROVIDED BY SOUTHERN COMPANY SERVICES.

6. THE FINAL COVER CONSISTS OF A 60 MIL HDPE (HIGH DENSITY POLYETHYLENE) LINER, GEOCOMPOSITE DRAINAGE MEDIA, A MINIMUM 18-INCH PROTECTIVE SOIL COVER, AND A 6-INCH VEGETATIVE LAYER TO ESTABLISH VEGETATION.



KEY MAP

Geologic Section B-B'
Georgia Power Company
Plant Hammond AP3
Floyd County, Rome, Georgia

Geosyntec

FIGURE

LEGEND

SOIL BORING (DASHED WHERE PROJECTED)

¥	GROUNDWATER ELEVATION (SEPTEMBER 14, 2020)
	SCREEN INTERVAL
	FINAL COVER

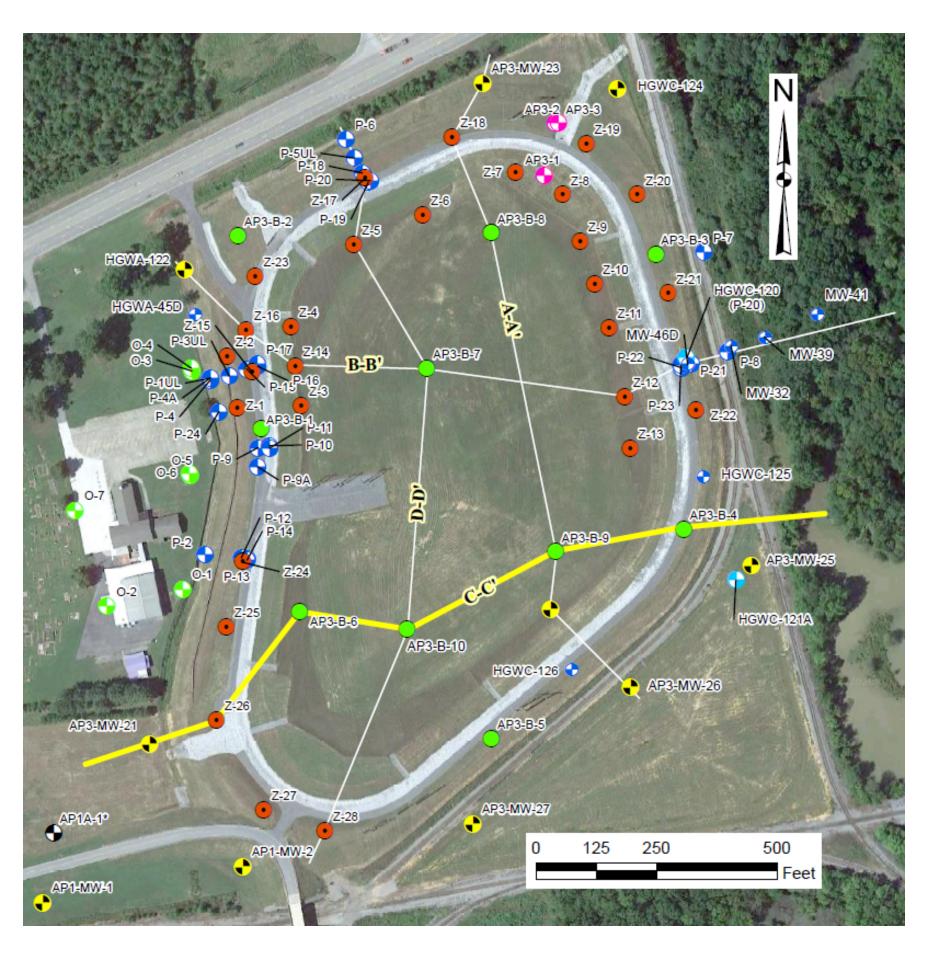
		1.	SUBSU INFORI
		2.	ELEVA SOIL B
SOIL LAY	ER DESCRIPTIONS COAL COMBUSTION BYPRODUCT (ASH)	3.	Boring Throu Ap1 Ai Boring
	FILL (LEAN CLAY OR GRAVELLY LEAN CLAY WITH SAND)		FEBRU 2020.
	TERRACE MATERIAL (CLAYEY SAND, SANDY CLAY, GRAVELLY SILTY CLAY)	4.	HORIZO CM/SEO
	RESIDUUM (LEAN CLAY, LEAN CLAY WITH GRAVEL, FAT CLAY OR SANDY FAT CLAY)	5.	EXISTII ES1844
	HIGHLY WEATHERED LIMESTONE (CLAYEY GRAVEL, SANDY LEAN CLAY WITH GRAVEL)	6.	THE FI

NOTES:

LIMESTONE _

VERTICAL EXAGGERATION: 10X

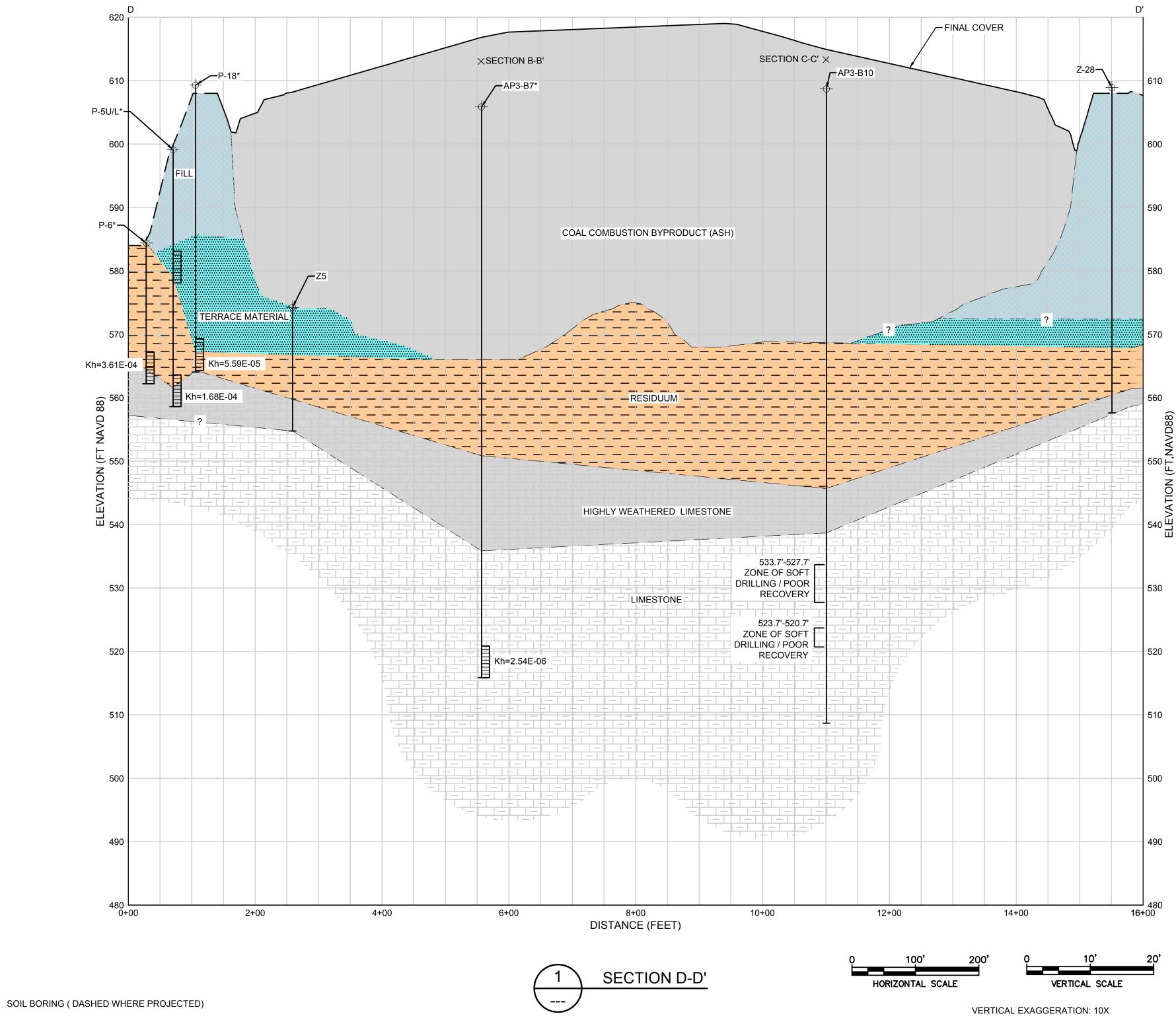
SURFACE LITHOLOGIC ELEVATIONS BETWEEN BORINGS ARE INTERPRETED BASED ON AVAILABLE DRMATION AND SHOULD BE CONSIDERED APPROXIMATE.


VATIONS OF LITHOLOGIC UNITS WERE ESTIMATED BASED ON GROUND SURFACE ELEVATIONS OF BORINGS.

RING LOGS AND HYDROGEOLOGIC INFORMATION FOR SOIL BORINGS Z1 THROUGH Z28 AND P1 OUGH P24 (1976 & 1977), AP3-1, AP3-2, AND AP3-3 (2010), MONITORING WELLS AROUND ASH PONDS AND AP3 (2014), P20 AND P21 (2016) WERE PROVIDED BY SOUTHERN COMPANY SERVICES. SOIL INGS/PIEZOMETERS AP3-B1 THROUGH AP3-B11 WERE INSTALLED BY GEOSYNTEC CONSULTANTS IN RUARY 2017. MONITORING WELL HGWC-125 WAS INSTALLED BY GEOSYNTEC CONSULTANTS IN MAY

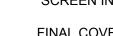
IZONTAL HYDRAULIC CONDUCTIVITY (Kh) IN CM/SEC. VERTICAL HYDRAULIC CONDUCTIVITY (Kv) IN SEC.

TING TOPOGRAPHIC MAP USED IN THE GEOLOGIC SECTION WAS BASED ON DRAWING NUMBER 44S1 PROVIDED BY SOUTHERN COMPANY SERVICES.


6. THE FINAL COVER CONSISTS OF A 60 MIL HDPE (HIGH DENSITY POLYETHYLENE) LINER, GEOCOMPOSITE DRAINAGE MEDIA, A MINIMUM 18-INCH PROTECTIVE SOIL COVER, AND A 6-INCH VEGETATIVE LAYER TO ESTABLISH VEGETATION.

KEY MAP

Geosyntec⊳	FIGUR
Georgia Power Company Plant Hammond AP3 Floyd County, Rome, Georgia	
Geologic Section C-C'	


FIGURE

LEGEND

SCREEN INTERVAL

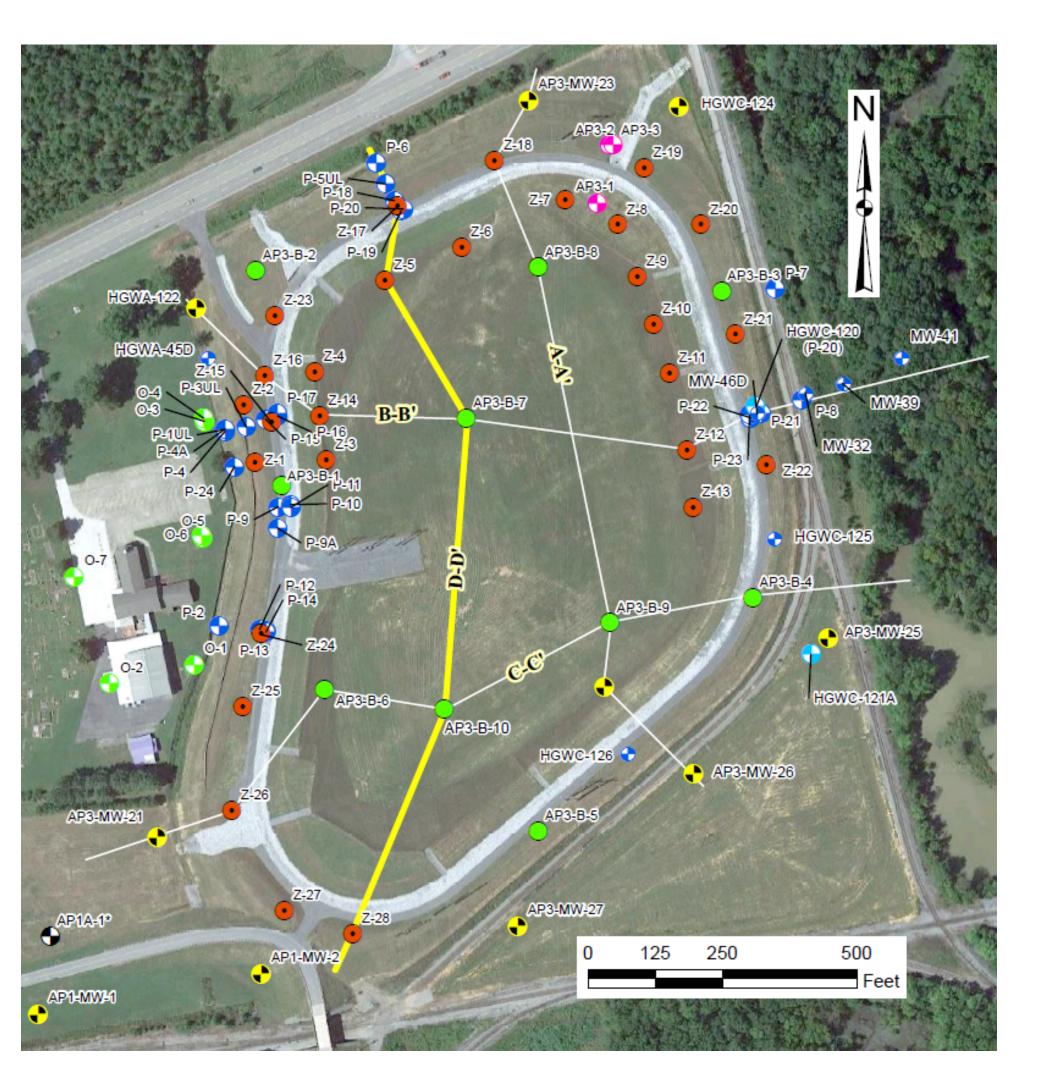
FINAL COVER

NOTES:

SOIL LAYER DESCRIPTIONS COAL COMBUSTION BYPRODUCT (ASH)

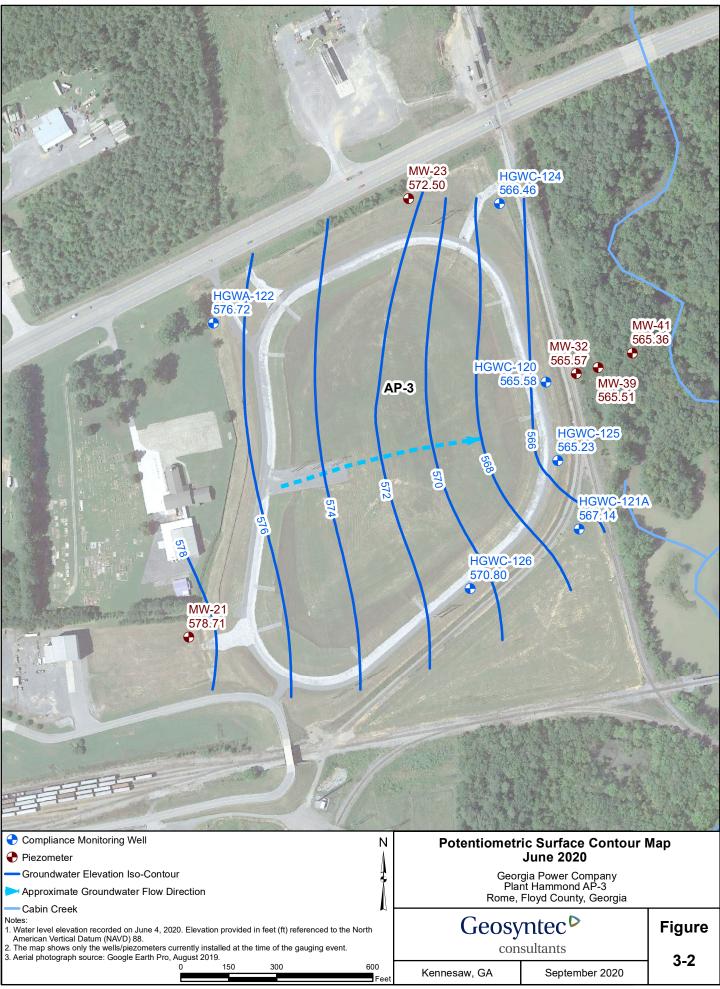
FILL (LEAN CLAY OR GRAVELLY LEAN CLAY WITH SAND) TERRACE MATERIAL (CLAYEY SAND, SANDY CLAY, GRAVELLY SILTY CLAY) RESIDUUM (LEAN CLAY, LEAN CLAY WITH GRAVEL, FAT CLAY OR SANDY FAT CLAY) HIGHLY WEATHERED LIMESTONE (CLAYEY GRAVEL, SANDY LEAN CLAY WITH GRAVEL) LIMESTONE

1. SUBSURFACE LITHOLOGIC ELEVATIONS BETWEEN BORINGS ARE INTERPRETED BASED ON AVAILABLE INFORMATION AND SHOULD BE CONSIDERED APPROXIMATE.

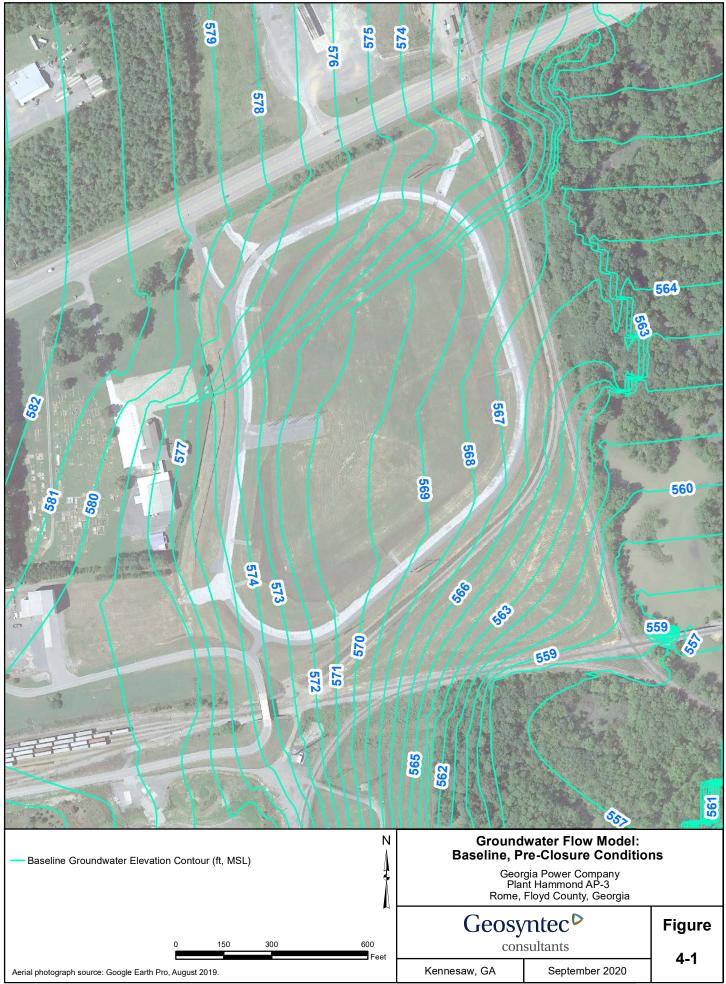

2. ELEVATIONS OF LITHOLOGIC UNITS WERE ESTIMATED BASED ON GROUND SURFACE ELEVATIONS OF SOIL BORINGS.

3. BORING LOGS AND HYDROGEOLOGIC INFORMATION FOR SOIL BORINGS Z1 THROUGH Z28 AND P1 THROUGH P24 (1976 & 1977), AP3-1, AP3-2, AND AP3-3 (2010), MONITORING WELLS AROUND ASH PONDS AP1 AND AP3 (2014), P20 AND P21 (2016) WERE PROVIDED BY SOUTHERN COMPANY SERVICES. SOIL BORINGS/PIEZOMETERS AP3-B1 THROUGH AP3-B11 WERE INSTALLED BY GEOSYNTEC CONSULTANTS IN FEBRUARY 2017.

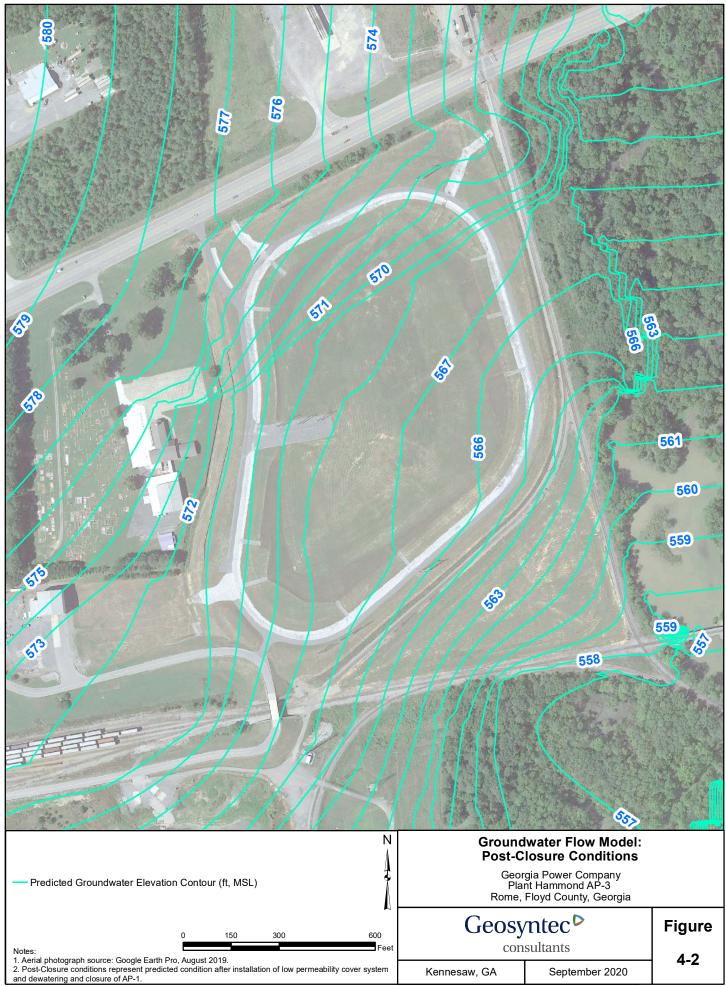
4. HORIZONTAL HYDRAULIC CONDUCTIVITY (Kh) IN CM/SEC. VERTICAL HYDRAULIC CONDUCTIVITY (Kv) IN CM/SEC.

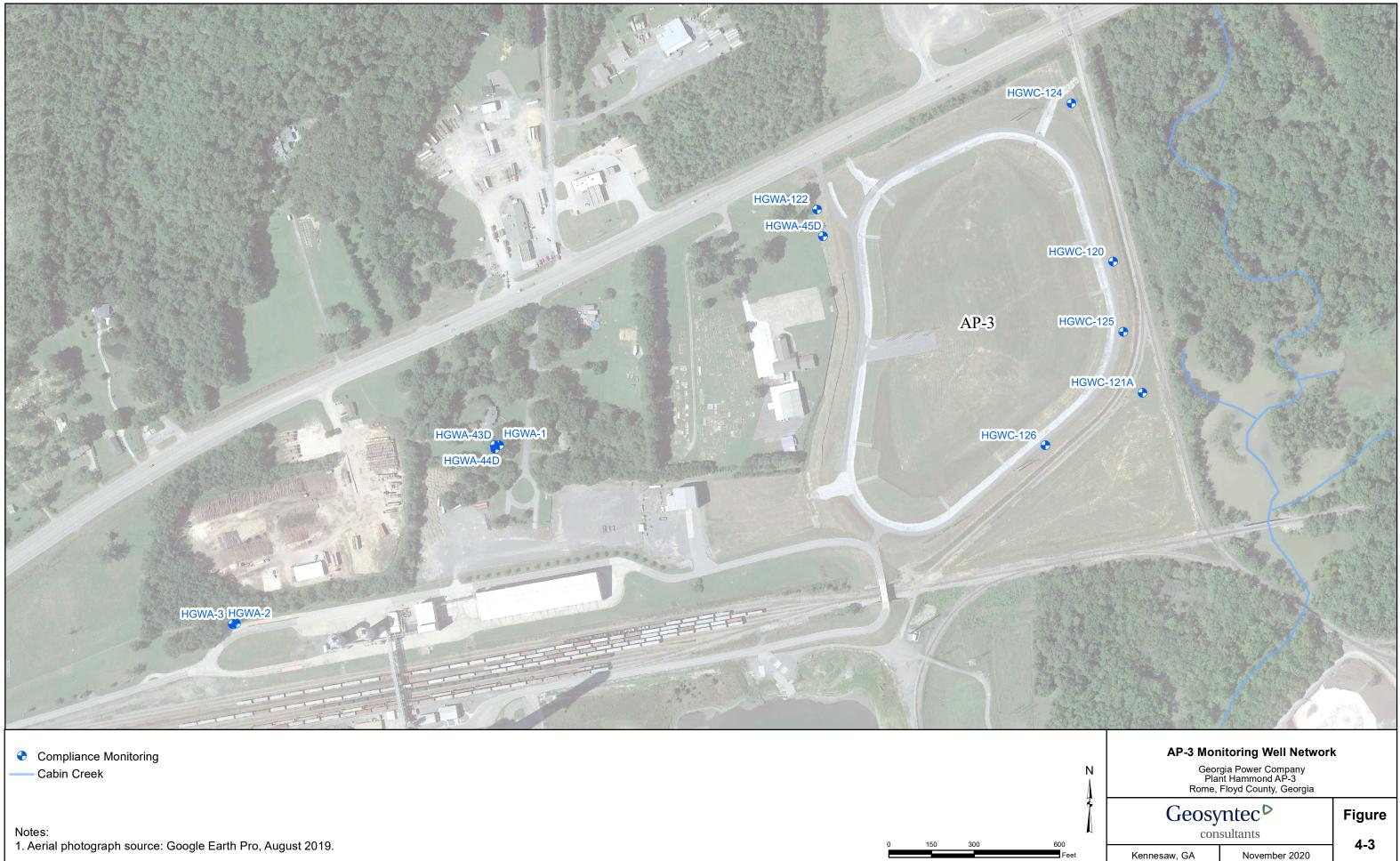

5. EXISTING TOPOGRAPHIC MAP USED IN THE GEOLOGIC SECTION WAS BASED ON DRAWING NUMBER ES1844S1 PROVIDED BY SOUTHERN COMPANY SERVICES.

6. THE FINAL COVER CONSISTS OF A 60 MIL HDPE (HIGH DENSITY POLYETHYLENE) LINER, GEOCOMPOSITE DRAINAGE MEDIA, A MINIMUM 18-INCH PROTECTIVE SOIL COVER, AND A 6-INCH VEGETATIVE LAYER TO ESTABLISH VEGETATION.

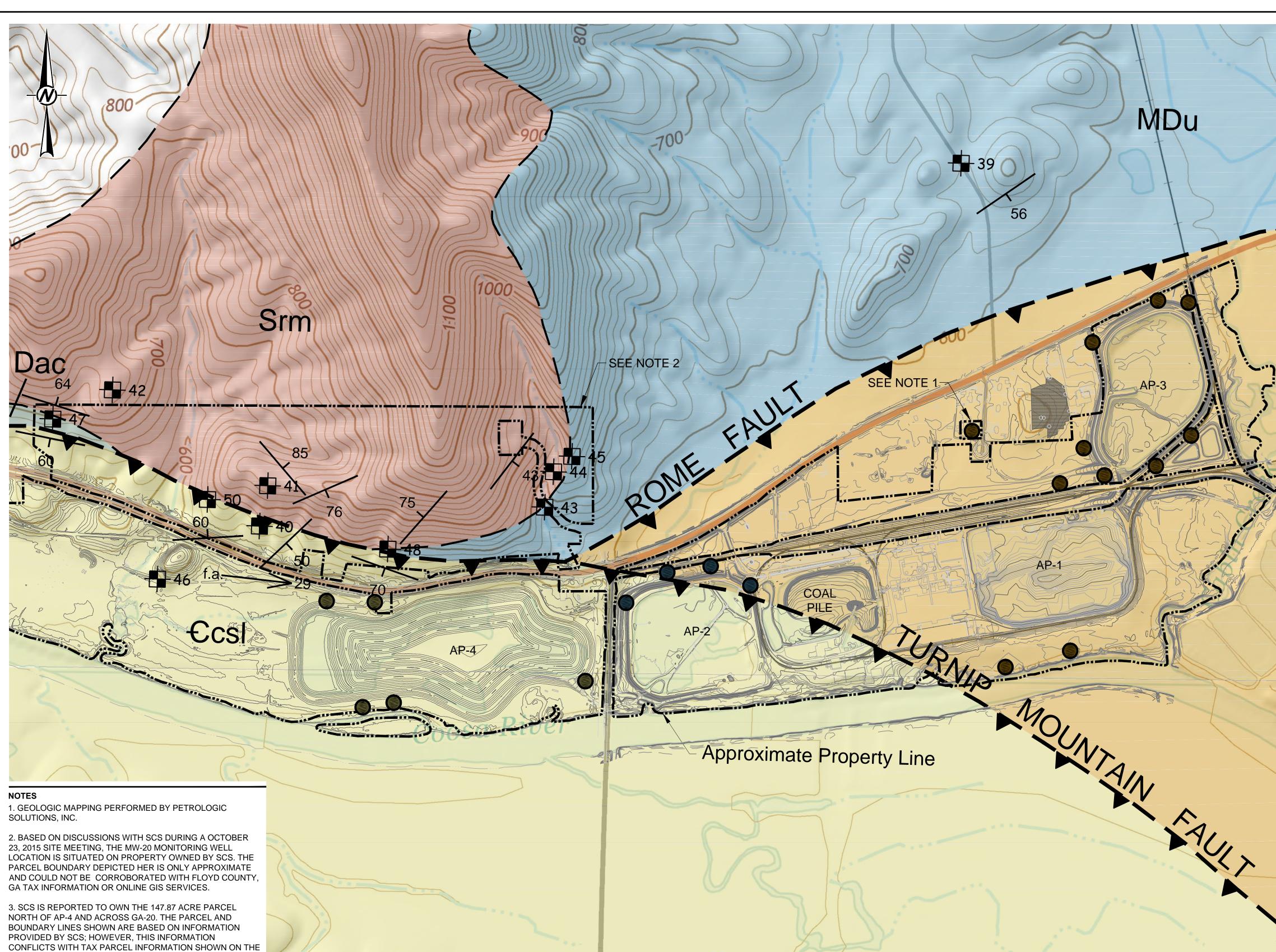


KEY MAP


Geosyntec [▶]	FIG
Georgia Power Company Plant Hammond AP3 Floyd County, Rome, Georgia	
Geologic Section D-D'	


N\GA Power\Plant Hammond GW Mon-Rpt Proposal\Siting and Hydrogeo Reports\AP-3\Combined Siting and HydroGeo\GIS\mxdl/2020\Figure3-2_June2020 pot map.mxd 9/18/2020 6:21:05 PM

N:GA PowertPlant Hammond GW Mon-Rpt ProposaliSiting and Hydrogeo Reports/AP-3)Combined Siting and HydroGeo\GIS\mxdl2020\Figure4-1_AP3 Particle Tracking for HAR Revision 01_potrait.mxd 9/18/2020 6:25:36 PM



N:GA Power\Plant Hammond GW Mon-Rpt Proposal/Siting and Hydrogeo Reports\AP-3\Combined Siting and HydroGeo\GIS\mxd\2020\Figure4-2_AP3 Particle Tracking with CAP for HAR Revision 01_potrait.mxd 9/18/2020 6:29:54 PM

APPENDIX A

Site Geologic Map (Petrologic Solutions, Inc.)

LEGEND

1: \\atlanta\cadd\Southern Company\Plant Hammond\1534855\Pro

MOUNTAIN (MISSISSIPPIAN/DEVONIAN) Dac - ARMUCHEE CHERT (DEVONIAN) & CHATTANOOGA SHALE (DEVONIAN)

MDu - UNDIFFERENTIATED EAST OF TURNIP

FLOYD COUNTY, GA ONLINE GIS MAP SYSTEM.

Srm - RED MOUNTAIN FORMATION (SILURIAN)

Ecis - CONASAUGA FORMATION MIDDLE UNITS (CAMBRIAN)

Ccsl - CONASAUGA FORMATION LOWER UNITS (CAMBRIAN) f.a:

PROPERTY BOUNDARY (AS PROVIDED BY SOUTHERN COMPANY SERVICES, INC.) INTERPRETED GEOLOGIC CONTACT BEDDING GEOLOGIC MAP STATION

THRUST FAULT FOLD AXIS

REFERENCES 1. USGS 7.5 MINUTE QUADRANGLE, LIVINGTON AND ROCK MOUNTAIN, 2014.

Ccls - SHALEY LIMESTONE IN ROCK CORE

Ecsl - GRAY & BROWN CALCAREOUS SHALE IN ROCK CORE

MDu - FISSILE, BLACK SHALE IN ROCK CORE

CONSULTANT

YYYY-MM-DD	2017/10/13
DESIGNED	-
PREPARED	SEP
REVIEWED	TIR
APPROVED	RPK

Upre	TH	
In	100	
75	Ő	
	h	
	p	
		600
	+ f	
		$ \leq \langle$
9	Ecls	hill
\searrow		
AD		
	++	
AL		7 1 2
20.05	600	
		- 1 CC
		- RIPI
	K	
	7(600>	
	SIG	0 500 1000 1" = 500' FEET
	OND HYDROGEOLOGIC	
- GEOLOGIC MA	\P	

PROJECT NO. 1534855 REV.

FIGURE

APPENDIX B

Boring Logs for Locations Shown on Geologic Cross-Sections

TRANSECT A-A' LOGS

ž 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Log updated	w k	ith re	evised su	vey certified 5/19/	2020.				
	SOUT				;		ecori Const) OF RUCTION		WELL: AP03-MW23 PAGE 1 OF 1 <u>ECS37736</u>
	SOUTHE	DN	CO	ΜΠΛΝΙΎ Ο	ERVICES, INC.		PROJE	CT Ash Pond Pie	ezometers	
Ì	EARTH S	CIE	ENCI	E AND EN	VIRONMENTAL	ENGINEERING				
Ĭ							200/11			
	CONTRACT	OR	SC	S Field S	ervices	EQUIPMENT	CME 550	METHOD Hollow	w Stem Auger; HQ F	
5	DRILLED BY	(F. Mi	lam	LOGGED BY _V	V. Shaughnessy		DBY L. Millet	ANGLE	BEARING
	BORING DE	PT	H _2	9.5 ft.	GROUND WATE	ER DEPTH: DURIN	G <u>15 ft.</u>	COMP	DELAYED	8.9 ft. after 72 hrs.
	NOTES <u>W</u>	ell	insta	lled. Refe	to well data sheet.					
5	BOREHOLE	æ	_			WELL DAT	Δ			COMMENTS
5	DATA		Тор	of Casing El						
š		DEPTI			Surface: rotective aluminum	over with bollard	s: 4-foot eau	lare concrete nad		
Ĕ		Ш		∎'			5, ⊣ 100t Sqt	and concrete pau		
	ELEV. Strata								ELEV. [DEPTH]	
Į			· 7 .							
		}	₽.;•.		 Surface Seal: co 				580.13	
2		}	KÜ						[2.0]	
5			\gg							
5		1	\mathbb{K}	$A \otimes$						
-	576.13		$\langle \rangle \rangle$		Well: 2" OD PV	C (SCH 40)				
			X							
Ń]	\mathbb{X}							
		1	\otimes		Annular Fill: Cer	ment-Bentonite Gr	out (3 - 94lb	s. bags, 33 gal.)		
5		0	$\langle / / \rangle$,	0, 0,		
5		<u> </u>	\otimes							
	570.13	1	\langle / \rangle							
Ĭ			\gg							
	09	1	$\mathbb{K}//$							
5	202	1	\gg						567.53	
Ĩ	0	÷							[14.6]	
	5Z	.			Annular Seal: 3	/8 bentonite pellets	s (1 - 50lbs.	bucket)		
	696							·	564.83	
	¢)	1			 Filter: #1A silica 	filter sand (3.5 - 5	() he hade)		[17.3]	
	Ø)	1					olus. bays)		563.03	
0 '		50		1					[19.1]	
2	p /]								
2	697]								
	558.63]								
ξf		1			Screen 10 ft 0	.010" slot pre-pack				
j		25		日記						
Į	<u> </u>	1								
Ş	⊢ —	 								
		1] 日						
0 	552.63								553.03	
		1			Sump:0.40 ft.					
										Easting and Northing in NAD 1983. Elevation in NAVD 88.
5										
5										
Ĭ										
аI										

ž

LOG	OF	80	R	ING
-----	----	----	---	-----

SHEET___OF___

Soil Systems, Inc. PROJECT <u>GA. POWER PLANT HANIMUND</u> SS <u>- 753</u> BORING NO. <u>Z-18</u> DRILL CREW MEMBERS <u>N. MEEKINS</u>, <u>M. DICKERSO</u> DATE 12-27-76

ELEV.	• .		DES	CRIP	TION			DEPTH		S/	AMPLES	r	NOTES
								FEET	NO.	TYPE	BLOWS/6"	RECOV.	· · · · · · · · · · · · · · · · · · ·
				· · · ·					↓ ·				
	170	<u></u>	4.1	1.11	rock	1	- {	51	1	SP	15-23-24		
	Ium	<u>CC</u> ,	SENd		TOCK	<u></u>	<u> </u>	5.0'					- REFUSAL Q6
					.,			6.0					<u>A CPURIO CE O</u>
·									· · · · ·				
												• •	
			-2·					<u> </u>					· .
			. , **,		. <u>.</u>		· ·						· · · · · · · · · · · · · · · · · · ·
			· · · · · ·					<u> </u>					
	<u>`</u>											<u>.</u>	
				· · · ·	·		·	<u> </u>				·	
								<u> </u>				•	· · · · · · · · · · · · · · · · · · ·
							,						· · · · · · · · · · · · · · · · · · ·
			· · · ·		·			<u>}</u>			·		
								<u> </u>					· .
							······	<u> </u>					
													· · · · · · · · · · · · · · · · · · ·
					······.	`	~						
							•						
								<u> </u>				<u>_</u>	· · · · · · · · · · · · · · · · · · ·
								ļ					
								<u> </u>					
													·
					·								
			,					·					
													· · · · · · · · · · · · · · · · · · ·
											1		
					·		· · ·						
		 A. P		·						أفرير			
		্ৰেন্দ্ৰ জন্ম						in the second					
	<u> </u>	•		4 ju - 10									·
				<u></u>		·	· · · · ·				·		
					•		;				· · · · · · · · · · · · · · · · · · ·		GWATOB-
		·····	<u> </u>										GW24hrs- NONE
					<u> </u>	•	<u> </u>	·····					REFUSAL-> 6.0
													GWATOB- GW24hrs HONE REFUSAL- 6.0 BORING 2-18 TERMINATED- 6.0
	*-		<u> </u>								, ¹	·	TERMINATED- 6.0
					• • •	· · · · ·							
				:		1					· ·		-
·			· · · · · · · · · · · · · · · · · · ·	•				, second s					
											*		
		. 2	. ,										

LOG OF BORING

SHEET__OF___

Soil Systems, Inc. PROJECT <u>GA. POWER PLANT HAMMOND</u> SS <u>-753</u> BORING NO. <u>7-184</u> DRILL CREW MEMBERS N. MEEKINS, M. DICKERSON DATE 12-27-76

ELEV.	DESCRIPTION	DEPTH			AMPLES		NOTES
LEV.		FEET	NO.	TYPE	BLOWS/6"	RECOV.	
	24		Î .				•
	Tan CL SAND W/ROCK FRAGS	5:0'	1	SP	14-21-24		
	100 CC Stills Track Frigs		[<u>`</u>				
<u> </u>	Tam CL SAND W/ROLK FRAGS	10'	2	SP.	9-10-17		
	Javin CC Odino Jicocie Presija	1				· ·	
	TAM SHITY SAND	15	3	SP	14-20-27		
	TAM SHITY SAND			······			
	Trand / 10 Surta Sand WRYK	20'	4	SP	10-15-21		
	Tamt Gray SILTY Sand WRick		-/			•	
	Gray Weathered Shale	25'	5	SP	14-22-20		
	- 1 - Conference Street						
	BR. SI Fra S. Q Chy RK-FIGES	300	6	SP	21/23/20		
	the second secon	1					
	BR. S. Fm Ja	35.0	7	Sp	10%- 4.11		
	and the second			<u> </u>			
	BR. d Im So @ Rk. Trigs	965	18	SP	22/16/2	b	
		Г					
	Kell-BR. 5, Cl	380	19	SP	11/17/20	1	
			Ľ				4 4 1
	Same	32.5	10	SP	5/8/12		
	Jean and a state of the state o						
	Same	41.0	11 .	SP	5/1/28		·····
	· · · · · · · · · · · · · · · · · · ·	1.				<u> </u>	<u> </u>
	Tan sich	425	12	50	2/3/4		1.09.3
		<u> </u>		0	16.7	<u> </u>	47,5
	Sare	440	13	SP	1/3/2		(361.8)
				in the second	7/28:	ļ	
	Same	45.5	14	₽₽_	313B		
	1 · · ·	1		0	1 rintan	· · ·	L
	SR. sicl Queath Shale	470	15	15P	1/1/02	//	$\sum_{i \in \mathcal{N}} \frac{g_i}{f_i}$
		In	1	100	1010 11		
	GR. neith shale	485	<u>16</u>	50	10/211	14	<u> </u>
		ļ				<u> </u>	/
			ļ			· · · ·	
	and the second sec	<u> </u>		·			
							<u></u>
					·		GWATOB- 45 GW24hrs 345 REFUSAL- 45
		<u> </u>			ļ		GWATOB- 45- all
•	at the second	<u> </u>				 	GW24hrs 34.5
		<u> -</u>					BEFLISAL - 47 511
	·	 					BORING 714A
		<u> </u>					TERMINATED- 5775-11
		<u> </u>					
		 					
,	14. 						
	A start and a start and a start	<u> </u>				. ·	1979. 1978:
	A CANADA A C						

J.

LOG OF BORING

ST	LOG	O
Soil Systems, Inc.		
PROJECT Plant	Hammond	

Z-18-B

PROJECT Plant	Hammond	SS - 753	BORII	NG No.
PROJECT 1 1901	10000 (0. th	M. Dickerson, E, Will		
DRILL CREW MEME	BERS MI. 10 Halyor	101 DICHOON E, MI	[[mm]]	DATE

[T		DEPTH		S	AMPLES		NOTES
ELEV.	DESCRIPTION	FEET	1		BLOWS/6"	RECOV.	NOTES
		-		h			
			ł	:			
		_					
· .							
		<u>}</u>			······		
	·						Set 48.0 NX Casing
	·	_	<u> </u>				
							· · · · · · · · · · · · · · · · · · ·
					·		
		·		·			
		47.3					
ļ		FF/, 3					
<u> </u>	Start Core @ 47.3		·				Run - 13
							Run-1.3 Rec4
	-	48,6	1				
	······································						Run - 2.4
·							Run - 2.4 Rec - 1.5
		51,0	2				
		-121,2					
	· · · · · · · · · · · · · · · · · · ·		┼	·			
							Run - 7.7
							Run-2.7 Rec- 1.7
		53.7	2	<u> </u>		·	
			1.2	<u> </u>			
				· · ·			
							Run- 3, 6
<u> </u>							Rec - 2.4-
	· · · · · · · · · · · · · · · · · · ·	57.3	4			<u> </u>	Rec - 2.4- GWATOB-
	Bot. Hole @ 57,3		+ -				GW24hrs
	Day, MOR (0) (. 3						REFUSAL-
			1	<u> </u>			BORING
	20 Rec. = 60,0%						TERMINATED-
	10 Nec. = 60,010		-				
			1	1			
			1				
			<u> </u>				

		Synte onsulta		>	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	sh Pond 3	BO Boring No. Page:	ORING LOG AP3-B-8 1 of 5	
Drilling St Drilling Er Drilling Ca Drilling M Drilling Ea Driller Na Logged B	nd Date ompany ethod: quipmei me:	2: 02/07 2: Caso Soni nt: C100 J. Tr	7/2017 cade I c) riepke	7 Drilling e/L. Tu	_		Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	32	3), Shelby Tube 1323.29	(ST)
DEPTH (ft)	WATER LEVEL	BORING COMPLETION	Sample Type	Recovery (ft)	LLECT	SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
0 			СВ	3.0 1.8 3.5 1.8	on 02/04/2017	fine-coarse gravel, mostly silt, few clay black. (5') Ash (COAL CO BYPRODUCT), por	T with gravel (ML); little some fine-medium sand, , low plasticity, soft, moist, MBUSTION orly graded SAND (SP); sand, little silt, some clay,	Soil Grab Sample AP3-B-8(11-12)	Photo represents recovered sample between 0-2 ft interval.	- 605
	<u> </u>				UT UZIU T /ZUT/		ש שטווא וומוע מעשרו.			

	CO	ynte nsultai	nts	>		Southern Company Plant Hammond As 5963 Alabama Hwy	h Pond 3	BC Boring No. Page:	PRING LOG AP3-B-8 2 of 5	
Drilling Start I Drilling End D Drilling Comp Drilling Metho Drilling Equipt Driller Name: Logged By:)ate: any: od:	02/07 Casc Sonie :: C100 J. Tr	7/2017 cade [c iepke	7 Drillinç e/L. Tu			Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	90 6 Core Barrel (CE 32 605.09 1942521.4, 155	3), Shelby Tube 1323.29	(ST)
DEPTH (ft) LITHOLOGY	WATER LEVEL	BORING COMPLETION	Sample Type	Recovery (ft) O	opord d	SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
			CB CB CB	2.5		mostly fine grained s loose, moist, black. (21') Ash (COAL CI BYPRODUCT), poo mostly fine grained s loose, moist, dark g (25') Ash (COAL CI BYPRODUCT), poo mostly fine grained s loose, wet, dark. (30') Ash (COAL CI BYPRODUCT). No and 35 ft. (35') Ash (COAL CI BYPRODUCT), poo mostly fine grained s loose, saturated, dar	rly graded SAND (SP); sand, little silt, some clay, OMBUSTION rly graded SAND (SP); sand, few silt, trace clay, gray. OMBUSTION rly graded SAND (SP); sand, few silt, trace clay, OMBUSTION recovery between 30		Photo represents recovered sample between	- 585 580 580 575 575
40			×			RESIDUUM.	nedium stiff, wet, light artially laminated,	Soil Grab Sample AP3-B-8(39-40)	35-37 ft interval.	_
NOTE:	Hol	le pre-cl	eared	d to 5'	on 02/04/2017	by Cascade Drilling	g using hand auger.			

Drilling Method:SonicDTW During Drilling (ft):Drilling Equipment:C100DTW After Drilling (ft):32Driller Name:J. Triepke/L. TurnerGround Surface Elev. (ft):605.09	Ceosyntec Consultants	Client: Southern Company Project: Plant Hammond As Address: 5963 Alabama Hwy	h Pond 3	BC Boring No. Page:	ORING LOG AP3-B-8 3 of 5	
(1) ASOTOHLIJ ONLIJANOGO OQ SOIL/ROCK VISUAL DESCRIPTION SAMPLE 40 OVLIJANOGO OQ OQ Continued) Fat CLAY (CH); few silt, mostly clay, medium plasticity, medium plasticity, medium stiff, wet, light yellowish-brown, partially laminated, RESIDUUM. Shelby Tube AP3-B8(40-42) 45 OB 7.0 Image: CLAY (CL); few silt, mostly clay, medium stiff, wet, light yellowish-brown, partially laminated, RESIDUUM. Soil Grab Sample AP3-B8(40-42) 45 OB 7.0 Image: CLAY (CL); few silt, mostly clay, medium stiff, wet, light yellowish-brown, RESIDUUM. Soil Grab Sample AP3-B8(48-49) 45 OB 6.5 Image: CLAY (CL); some fine-coarse grave, trace fine-medium stiff, wet, light yellowish-brown, laminated Clay, RESIDUUM. Soil Grab Sample AP3-B-8(48-49) 50 OB 6.5 Image: CLAY (CL); some fine-coarse grave, trace fine-medium stiff, wet, black, angular rock fragments of linestone (reacted with HC), HIGHLY WEATHERED Soil Grab Sample AP3-B-8(48-49)	Drilling End Date:02/07/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. Tur		Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft):	6 Core Barrel (CE 32	3), Shelby Tube (1323.29	ST)
50 CB 7.0 Continued) Fat CLAY (CH); few silt, mostly clay, medium plasticity, medium stiff, wet, light yellowish-brown, partially laminated, RESIDUUM. AP3-B8(40-42) 45 CB 7.0 CB	DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft)		ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
Soil Grab Sample AP3-B-8(59-60)	45	 clay, medium plasti yellowish-brown, par RESIDUUM. (42') Lean CLAY (Cl medium plasticity, m yellowish-brown, RE (43') Lean CLAY (Cl medium plasticity, m laminated Clay, RES (50') Gravelly lean Cl gravel, trace fine-me clay, medium plastic angular rock fragme with HCl), HIGHLY 	city, medium stiff, wet, light tially laminated, L); few silt, mostly clay, hedium stiff, wet, light SIDUUM. L); trace silt, mostly clay, hedium stiff, wet, dark brown, SIDUUM.	AP3-B8(40-42) Soil Grab Sample AP3-B-8(48-49) Soil Grab Sample	Vertical K = 1.80E-07 cm/sec Photo represents recovered sample between 42-43 ft interval. Photo represents recovered sample between 50-51 ft interval.	- 565

Drilling Method: Sonic Drilling Equipment: C100 Drilling Equipment: C100 Driller Name: J. Triepke/L. Turner Logged By: Nardos Tilahun/James Griffin Image: Sonic Control Soli Critical Sonic Control Image: Sonic Control Sonic Control Image: Sonic Control Soni Critical Sonic Control Image: Sonic Control Sonic Control	BORING LOG Boring No. AP3-B-8 Page: 4 of 5	3	AP3-B-8		sh Pond 3	Southern Compar Plant Hammond A 5963 Alabama Hw	Client: Project: Address:		ynteo nsultants			
(U) HIAID O </th <th>ore Barrel (CB), Shelby Tube (S 2</th> <th>be (ST)</th> <th></th> <th>6 Core Barrel (CB 32 605.09</th> <th>Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft):</th> <th></th> <th>urner</th> <th>)17 e Drillin oke/L. T</th> <th>02/07/20 Cascad Sonic t: C100 J. Triep</th> <th>Date Dany Dd: Dmer</th> <th>g End I g Comp g Metho g Equip r Name:</th> <th>Drillir Drillir Drillir Drillir Drille</th>	ore Barrel (CB), Shelby Tube (S 2	be (ST)		6 Core Barrel (CB 32 605.09	Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft):		urner)17 e Drillin oke/L. T	02/07/20 Cascad Sonic t: C100 J. Triep	Date Dany Dd: Dmer	g End I g Comp g Metho g Equip r Name:	Drillir Drillir Drillir Drillir Drille
60') SEDIMENTARY ROCK (LIMESTONE); laminated, decomposed, soft, dark bluish gray, dry, reacted with HCl. (61') Fat CLAY with gravel (CH); trace fine-coarse gravel, trace fine-medium sand, high plasticity, very soft, wet, light greenish-gray, RESIDUUM. (63') Fat CLAY (CH); high plasticity, hard, dry, dark bluish-gray, RESIDUUM. (63') Fat CLAY (CH); high plasticity, hard, dry, dark bluish-gray, RESIDUUM. (67') SEDIMENTARY ROCK (LIMESTONE); laminated, slightly weathered, bluish black, dry. (67') SEDIMENTARY ROCK (LIMESTONE); laminated, slightly weathered, bluish black, dry.	SAMPLE REMARKS	ELEVATION (ft)	REMARKS	SAMPLE	ISUAL DESCRIPTION	SOIL/ROCK			BORING COMPLETION Sample Type	WATER LEVEL	КОТОНТИ	DEPTH (ft)
NOTE: Hole pre-cleared to 5' on 02/04/2017 by Cascade Drilling using hand auger.	Soil Grab	- 535 	has been pulverized by drilling methods Photo represents recovered sample between 66-68 ft interval. 6-inch diameter casing installed	Sample AP3-B-8(62-63) Soil Grab Sample AP3-B-8(64-65)	A soft, dark bluish gray, GI. gravel (CH); trace race fine-medium sand, high wet, light greenish-gray,); high plasticity, hard, dry, ESIDUUM. RY ROCK (LIMESTONE); weathered, bluish black,	laminated, decom dry, reacted with I (61') Fat CLAY wit fine-coarse gravel, plasticity, very soft RESIDUUM. (63') Fat CLAY (Cl dark bluish-gray, F (67') SEDIMENT/ laminated, slightly dry.		< B 4.0 B 0.0 B 4.0				

		CO		nts		1 '	Southern Company Plant Hammond As 5963 Alabama Hwy	h Pond 3	BO Boring No. Page:	ORING LOG AP3-B-8 5 of 5	
Drilling Drilling Drilling Drilling Drilling Driller N Logged	End D Comp Metho Equip Name:)ate: any: od: men	02/07 Casc Sonie t: C100 J. Tr	7/2017 cade [c iepke	7 Drillin 2/L. Tu	-		Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	32	B), Shelby Tube	(ST)
DEPTH (ft)	ГІТНОГОĠY	WATER LEVEL	BORING COMPLETION	Sample Type	Recovery (ft)	OLLECT	SOIL/ROCK V	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
80				СВ	4.0		(80') SEDIMENTAF laminated, slightly v dry. (90') Boring termina	RY ROCK (LIMESTONE); weathered, bluish black, ted.		Horizontal K = 5.15E-04 cm/sec (from single Packer Testing between 83-88 ft).	- 525 - - - 520 - - - - 515 - - - -
95-L	DTE:	Нс	le pre-cl	eared	1 to 5'	on 02/04/2017	7 by Cascade Drillin	g using hand auger.			

					>	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	sh Pond 3	BC Boring No. Page:	ORING LOG AP3-B-9 1 of 6	
Drillin Drillin Drillin Drillin Driller	g Start I g End E g Comp g Metho g Equip ⁻ Name: ed By:	Date: Dany Dd: Imen	: 02/09 : Caso Soni ot: C100 J. Tr	9/201: cade l c	7 Drillin ≱/L. Tu	-		Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	105 6 Core Barrel (CE 38.5 605.50 1942654.24, 15	-	
DEPTH (ft)	ГІТНОГОЄУ	WATER LEVEL	BORING COMPLETION	Sample Type	Recovery (ft)	OLLECT op ed ed	SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
0 - - - - - - - - - - - - - - - - - - -	IOTE:	Hc		СВ	4.0 5.0 5.0	on 02/08/2017	fine-coarse gravel, soft, moist, dark gra (6') Ash (COAL CO BYPRODUCT), SII fine-coarse gravel, brown. (7') Ash (COAL CO BYPRODUCT), SII gravel, soft, moist,	T with gravel (ML); trace trace fine-medium sand, ay. MBUSTION T with gravel (ML); little stiff, moist, pale yellowish- MBUSTION T with sand (ML); trace fine		Photo represents recovered sample between 1-2 ft interval.	- 605
N	IOTE:	Hc	ole pre-cl	eare	d to 5'	on 02/08/2017	by Cascade Drilling	g using hand auger.			

Geosyntec consultants		rn Company ammond As labama Hwy	h Pond 3	BC Boring No. Page:	RING LOG AP3-B-9 2 of 6	
Drilling Start Date:02/08/2017Drilling End Date:02/09/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurnLogged By:James Griffin	er		Boring Diameter (in):	105 6 Core Barrel (CE 38.5 605.50 1942654.24, 15		
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft) DO		OIL/ROCK V	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
20 25 25 CB 4.0 CB CB CB CB CB CB CB CB CB CB	BYPRC gravel,	DUCT), SIL soft, moist, d); trace fine-coarse gravel, iff, moist, pale SIDUUM.	Soil Grab Sample AP3-B-9(38-39)	Photo represents recovered sample between 37-38.5 ft interval.	- 585 580 575 570
NOTE: Hole pre-cleared to 5' or	02/08/2017 by Cas	scade Drilling	g using hand auger.			

Geosyntec Consultants	Project: Pla	outhern Company ant Hammond Asl 63 Alabama Hwy,	h Pond 3	BC Boring No. Page:	PRING LOG AP3-B-9 3 of 6	
Drilling Start Date:02/08/2017Drilling End Date:02/09/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurrLogged By:James Griffin	ner		Boring Diameter (in):	105 6 Core Barrel (CE 38.5 605.50 1942654.24, 15		
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft) D	LECT	SOIL/ROCK VI	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
40 - CB + 4.0 $45 - CB + 0$ $45 - CB + 0$ 4.0 $50 - CB + 0$ $CB + 0$	(41) pa (41) pa RE (42) fin mer vvi	55') Fat CLAY with he-coarse gravel, medi eyellowish-brown ESIDUUM. (7') Lean CLAY with he-coarse gravel, fe edium plasticity, so eddish-brown, no re /EATHERED LIME	gravel (CH); some ledium plasticity, stiff, moist, , no reaction with HCl, n gravel (CL); some w medium-coarse sand, ft, moist, light eaction with HCl, HIGHLY STONE.	Soil Grab Sample AP3-B-9(44-45) Soil Grab Sample AP3-B-9(49-50) Soil Grab Sample AP3-B-9(53-54)	Photo represents recovered sample between 53-54 ft interval. Photo represents recovered sample between 56-57 ft interval.	- 565
NOTE: Hole pre-cleared to 5' or	י 1 02/08/2017 by	v Cascade Drilling	using hand auger.			1

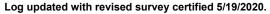
	C	synte onsulta	nts	>	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	sh Pond 3	BC Boring No. Page:	ORING LOG AP3-B-9 4 of 6	
Drilling Sta Drilling End Drilling Cod Drilling Me Drilling Equ Driller Nam Logged By	d Date mpany thod: uipme ne:	e: 02/09 y: Caso Soni nt: C100 J. Tr	9/2017 cade I c	7 Drilling 9/L. Tur			Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	105 6 Core Barrel (CE 38.5 605.50 1942654.24, 15	-	
DEPTH (ft) LITHOLOGY	WATER LEVEL	BORING COMPLETION	Sample Type	Recovery (ft)	LECT op ed	SOIL/ROCK V	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
			СВ	0.0		moderately bedded, dark bluish-gray, mo	Y ROCK (LIMESTONE); slightly weathered, hard, bist.		60-70 ft drilling head drop; unknown amount of water loss 6-inch diameter	- 545
		ole pre-cl	eared		on 02/08/2017	(75') No Recovery.	g using hand auger.		acasing installed at 75 ft. 75-80 ft soft drilling, rods advanced by pushing drill head down; no rotation or vibration Fracture at 75.9 ft (198 mm)	- 530 - - -

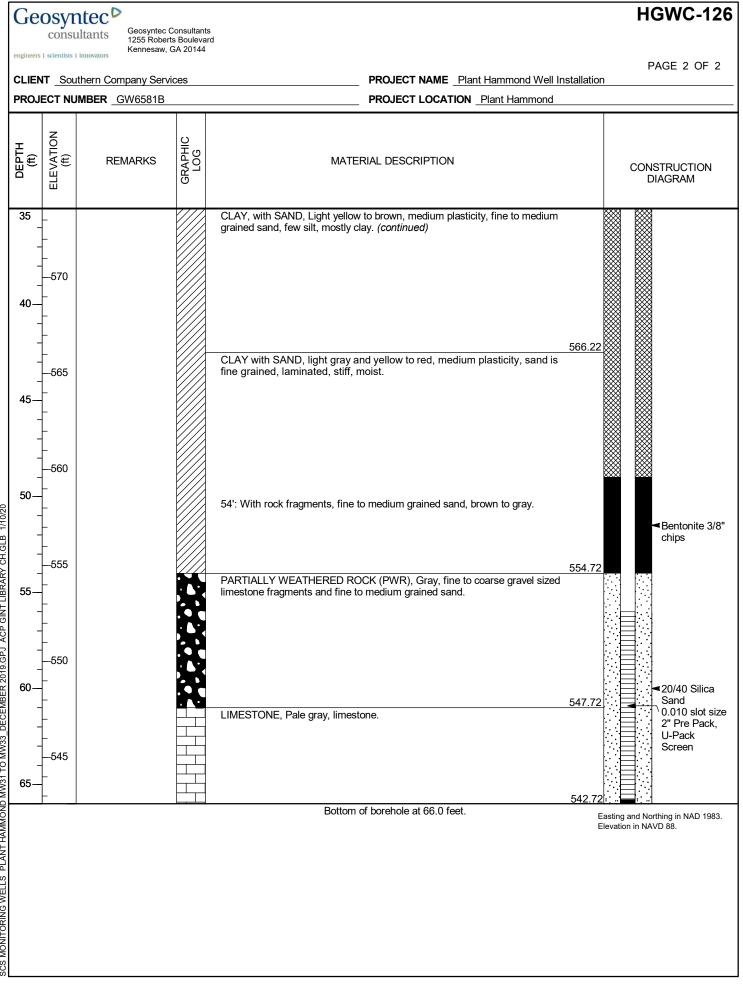
Ceosyntec Consultants	Client: Southern Company Project: Plant Hammond As Address: 5963 Alabama Hwy	h Pond 3	BC Boring No. Page:	RING LOG AP3-B-9 5 of 6	
Drilling Start Date:02/08/2017Drilling End Date:02/09/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurnLogged By:James Griffin	er	Boring Diameter (in):	105 6 Core Barrel (CE 38.5 605.50 1942654.24, 15		
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft) D		ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
80 CB 0.0 85 CB 0.0 CB 0.0 CB 0.0 CB 0.0 CB 0.0 CB 0.0	(continued) No Reco	overy.		(obtained from Geophysical Log) Geophysical logging terminated at 76.5 ft due to borehole collapse. 75-95 ft soft drilling.	- 525 - - - 520 - - - - 515 - - -
95 CB 3.0 0 0 0 0 0 0 0 0 0 0 0 0 0		Y ROCK (LIMESTONE); fresh, hard, dark bluish-gray,		Photo represents recovered sample between 95-96 ft interval.	- 510 - - -
NOTE: Hole pre-cleared to 5' or	02/08/2017 by Cascade Drilling	using hand auger.			

Geosyntec consultants	Client: Southern Company Project: Plant Hammond As Address: 5963 Alabama Hwy	h Pond 3	BC Boring No. Page:	ORING LOG AP3-B-9 6 of 6	
Drilling Start Date:02/08/2017Drilling End Date:02/09/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurnLogged By:James Griffin	er	Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	105 6 Core Barrel (CE 38.5 605.50 1942654.24, 15		
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft) DO		ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
	(continued) SEDIME (LIMESTONE); mod dark bluish-gray, mo	lerately bedded, fresh, hard, ist.		Photo represents sample between 100-101 ft interval.	- 505 - - - - 500 - -
	1 02/08/2017 by Cascade Drilling				

	osynte consulta	nts	>	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	h Pond 3	BC Boring No. Page:	RING LOG AP3-B-11 1 of 5	
Drilling Start D Drilling End D Drilling Compa Drilling Metho Drilling Equipr Driller Name: Logged By:	any: Case d: Soni ment: C100 Jere	ic D	7 Drillinç riepke			Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft):			
DEPTH (ft) LITHOLOGY	WATER LEVEL BORING COMPLETION	Sample Type	Recovery (ft)	LLECT Proto	SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
		CB	10.0		Silty SAND (SM); m silt, loose, saturated (1') Moist to wet. (2') With some oran trace of fine gravel. (4') Ash (COAL CO Silty SAND (SM); m some silt, trace clay, dark gray. (5') Slightly clayey, v (6') Pale gray to pale sandy, less silty. (8') Pale gray. (10-14') No Recove (14') Ash (COAL CO BYPRODUCT), poo (SP-SM); mostly fine clay, poorly graded, (15') Increasing silt of gray.	ge/brown sandy clay and MBUSTION BYPRODUCT), ostly fine grained sand, , poorly graded, loose, moist, with trace of fine gravel. e brown, predominantly		Photo represents recovered sample between1-2 ft interval.	- 605 600 600 600 595
NOTE:	Boring set	out si	de pov	wer line corridc	br.				

consultants engineers scientists innovators		Plant Hammond As 5963 Alabama Hwy	, Rome, GA	Boring No. Page:	AP3-B-11 2 of 5	
Drilling Start Date:02/16/2017Drilling End Date:02/16/2017Drilling Company:Cascade DrillinDrilling Method:SonicDrilling Equipment:C100Driller Name:Jeremy TriepkeLogged By:Christine Hug	_		Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):			
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft) D	DILECT oported	SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
20 25 - 30 - 0 B 8.0		(SP-SM); mostly fin medium dense, mo (24') Ash (COAL Ct BYPRODUCT), Silty grained sand, little s dense, wet, gray. (25') Ash (COAL Ct BYPRODUCT), Silty grained sand, little s dense, wet, gray.	OMBUSTION rly graded SAND with silt e grained sand, few silt, ist, dark gray. OMBUSTION y SAND (SM); mostly fine ilt, trace clay, medium OMBUSTION y SAND (SM); mostly fine ilt, poorly graded, medium		Sample picture between 25 ft and 30 ft shows no recovery at top of the run. However, core loss is likely at bottom of run due to saturated ground. Possibly perched water level at 26.5 ft.	- 585
³⁵ - 40		gravel, little fine san medium plasticity, m with some pale gray RESIDUUM. (37') With trace of fi	ge mottled. Increasing fine		Photo represents recovered sample between 35.5-37.5 ft interval.	- - 570 -

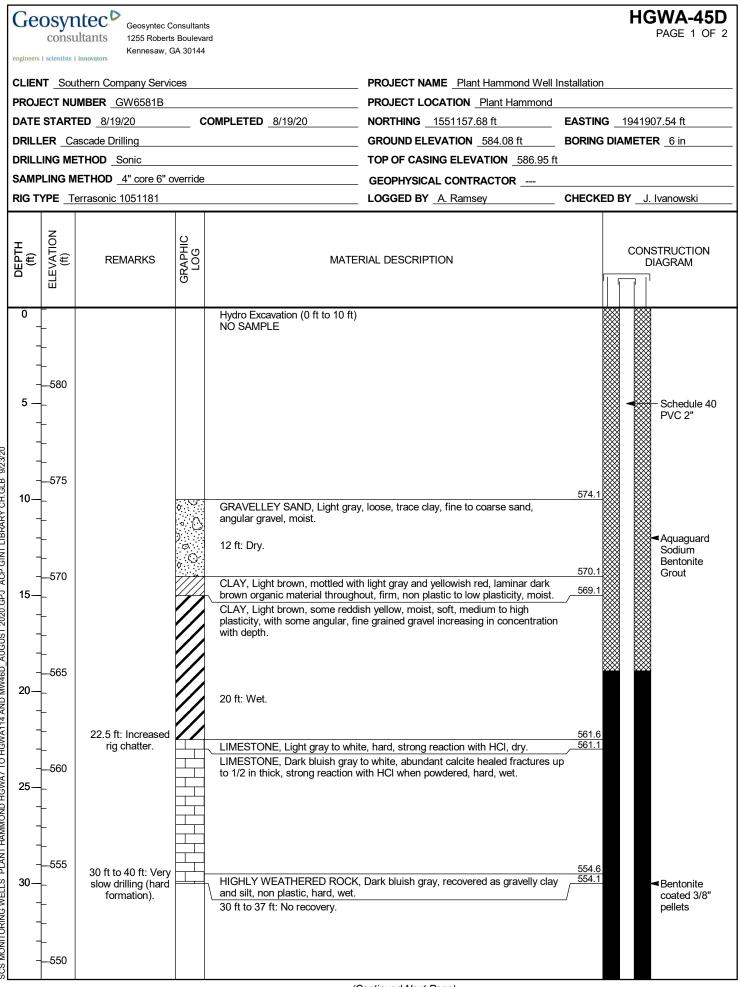

Drilling Method: Sonic Drilling Equipment: C100	of Triepke ne Hug COL	LECT	SOIL/ROCK V	Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft):	100 6 Core Barrel (CE 26 37.4 607.12 1942643.26, 15 SAMPLE		ION (ft)
	Recovery (ft)			ISUAL DESCRIPTION	SAMPLE	REMARKS	(tt) (lti)
	B 8.0		(40') No Recovery.				ELEVATION (ft)
50 50 50 50 50 50 50 50 50 50			gravel, little fine san medium plasticity, m with pale red stainin (45') Trace of fine g some silt. (49') Becoming dark (iron oxide) staining, clayey sand and pet (50') Clayey GRAVE grained gravel, few f some clay, poorly gr saturated, dark gray limestone, with frag HIGHLY WEATHEF	ravel, pale gray mottling, with t brown and dark orange, red , trace of weakly cemented bbles, RESIDUUM. EL (GC); mostly fine-coarse fine-medium sand, trace silt, raded, medium dense, , gravel is dark gray, angular ments up 5 diameter,		Photo represents recovered sample between 50-51.5 ft interval. Driller reported no resistance between 55 ft and 60 ft.	- 565


Geosyntec consultants	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	h Pond 3	BC Boring No. Page:	PRING LOG AP3-B-11 4 of 5	
Drilling Start Date:02/16/2017Drilling End Date:02/16/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:Jeremy TriepkeLogged By:Christine Hug			DTW During Drilling (ft):	100 6 Core Barrel (CE 26 37.4 607.12 1942643.26, 1		
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft)	oto end	SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
		fine-coarse grained sand, trace silt, som medium dense, satu WEATHERED LIME (62') Dry. (65') SEDIMENTAR thinly bedded, slight hard, dark gray, wet up to 5 inch length a (75') No Recovery. (76') SEDIMENTAR thinly bedded, fresh, (79') Drilled as more	Y ROCK (LIMESTONE); ly weathered, moderately , drilled as fragments of core and discs of core. Y ROCK (LIMESTONE); , hard, dark gray, wet.		Recovered sample reduced to 7 ft, fines possible washed away. 6 inch diameter casing installed at 65 ft, open hole between 65 ft and 100 ft. Driller reported moderately hard drilling from 66 ft. Photo represents recovered sample between 65-66 ft interval. Driller reported drop of rods between 75 ft and 76 ft. Loss of circulation between the 75 ft to 80 ft rod.	- 545 - 545
NOTE: Boring set out side pow	er line corrido		nents up to 6 inches long,			

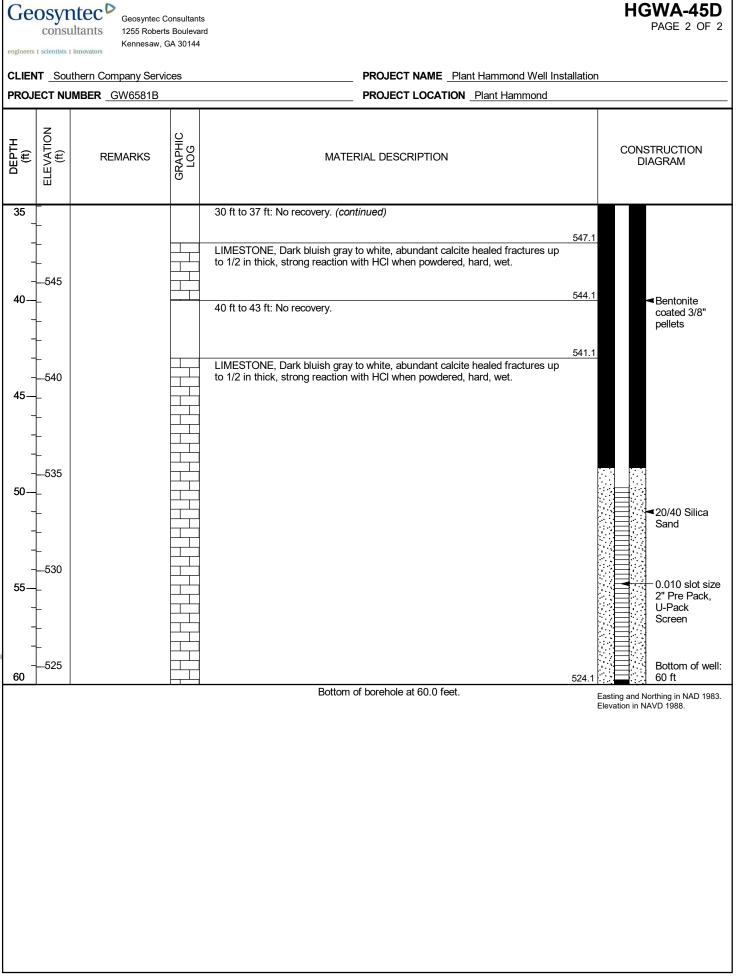
Geosyntec Consultants	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	h Pond 3	BC Boring No. Page:	PRING LOG AP3-B-11 5 of 5	
Drilling Start Date:02/16/2017Drilling End Date:02/16/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:Jeremy TriepkeLogged By:Christine Hug			Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	100 6 Core Barrel (CE 26 37.4 607.12 1942643.26, 1		
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft)	otou d	SOIL/ROCK V	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
80 85 90 90 0B 5.0 100 NOTE: Boring set out side power		dark gray, wet.	ly bedded, fresh, hard,		Photo represents recovered sample between 81-82 ft interval.	- 525
NOTE: Boring set out side powe	er line corrido	Dr.				

PROJECT NUM DATE STARTE DRILLER <u>SC</u> DRILLING MET	Kennesaw, GA Kennesaw, GA Innovators IMBER <u>GW6581B</u> TED <u>11/25/19</u> <u>CS Field Services</u> ETHOD <u>Sonic</u> IETHOD <u>Core Barrel (4</u> onic TS-150	20144 s COMPL	.ETED <u>11/26/19</u>	PROJECT NAME Plant Hammond N PROJECT LOCATION Plant Hamm NORTHING 1550422.03 GROUND ELEVATION 608.72 TOP OF CASING ELEVATION 611. GEOPHYSICAL CONTRACTOR LOGGED BY B. Weinmann	EASTING BORING E	PAGE 1 OF 1
PROJECT NUM DATE STARTE DRILLER SC: DRILLING MET SAMPLING ME SAMPLING ME SAMPL	IMBER _GW6581B TED _11/25/19 CS Field Services ETHOD _Sonic IETHOD _Core Barrel (4) onic TS-150	COMPL 4")		PROJECT LOCATION Plant Hamm NORTHING 1550422.03 GROUND ELEVATION 608.72 TOP OF CASING ELEVATION 611. GEOPHYSICAL CONTRACTOR	EASTING BORING E	1942689.40 DIAMETER <u>6 in</u>
DATE STARTE DRILLER SC DRILLING MET SAMPLING ME RIG TYPE So NOLL(1) H H H H H H H H H H H H H H H H H H H	ED 11/25/19 CS Field Services ETHOD Sonic IETHOD Core Barrel (4 onic TS-150	4")		NORTHING 1550422.03 GROUND ELEVATION 608.72 TOP OF CASING ELEVATION 611. GEOPHYSICAL CONTRACTOR	EASTING BORING D	DIAMETER 6 in
CRILLER SC CRILLING ME CAMPLING ME CAMPLIN	CS Field Services ETHOD Sonic IETHOD Core Barrel (4 onic TS-150	4")		GROUND ELEVATION <u>608.72</u> TOP OF CASING ELEVATION 611. GEOPHYSICAL CONTRACTOR	BORING D	DIAMETER 6 in
CRILLING MET CAMPLING ME RIG TYPE So NOLLAN (1) (1) (1) (1) (1) (1) (1) (1)	ETHOD <u>Sonic</u> IETHOD <u>Core Barrel (4</u> onic TS-150		MAT	TOP OF CASING ELEVATION 611.	.24	
	IETHOD Core Barrel (4 onic TS-150		MAT	GEOPHYSICAL CONTRACTOR		: D BY J. Ivanowski
	onic TS-150		MAT			DBY J. Ivanowski
(ft) (ft) (ft) (ft)		РОС СКАГНИС	MAT	LOGGED BY B. Weinmann		D BY J. Ivanowski
	REMARKS	GRAPHIC LOG	МАТ			
				ERIAL DESCRIPTION	ELEV:	CONSTRUCTION DIAGRAM
- - - - - - - - - - 605			lro excavation (0-10') - No		608.72	
5		grai	CLAY, with SAND, Light yellow to brown, medium plasticity, fine to m grained sand, few silt, mostly clay.		598.72 edium	
- - - - - - - - - - - - - - - - - - -						

Log updated with revised survey certified 5/19/2020.



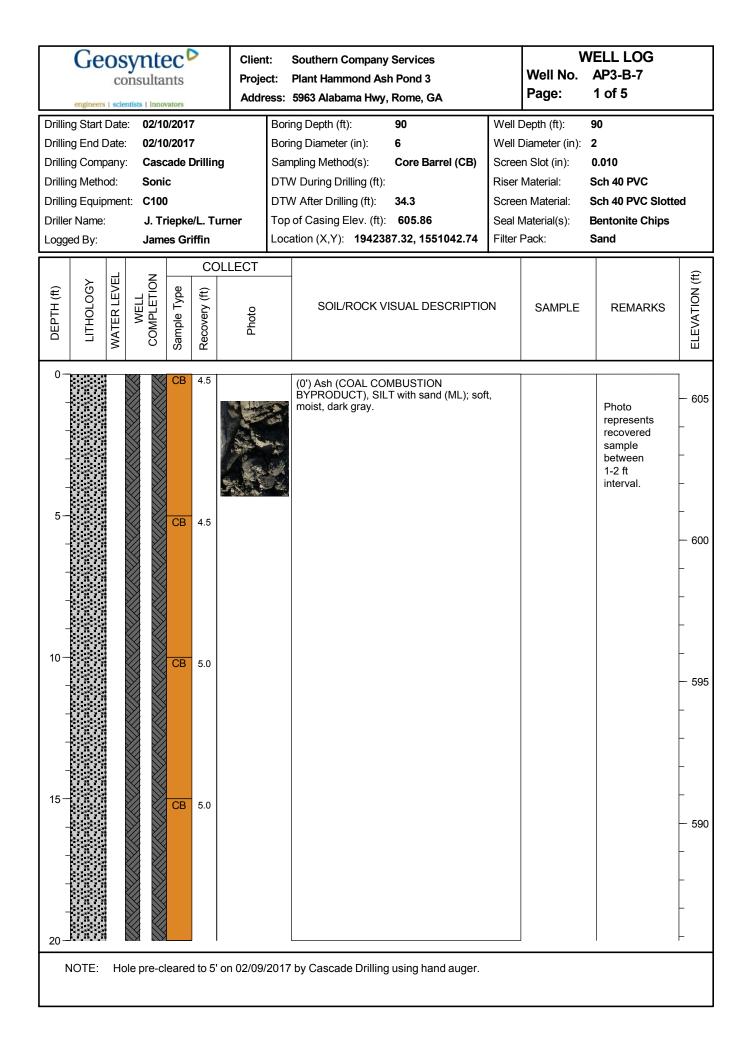
SCS MONITORING WELLS PLANT HAMMOND MW31 TO MW33 DECEMBER 2019.GPJ ACP GINT LIBRARY CH.GLB 1/10/20

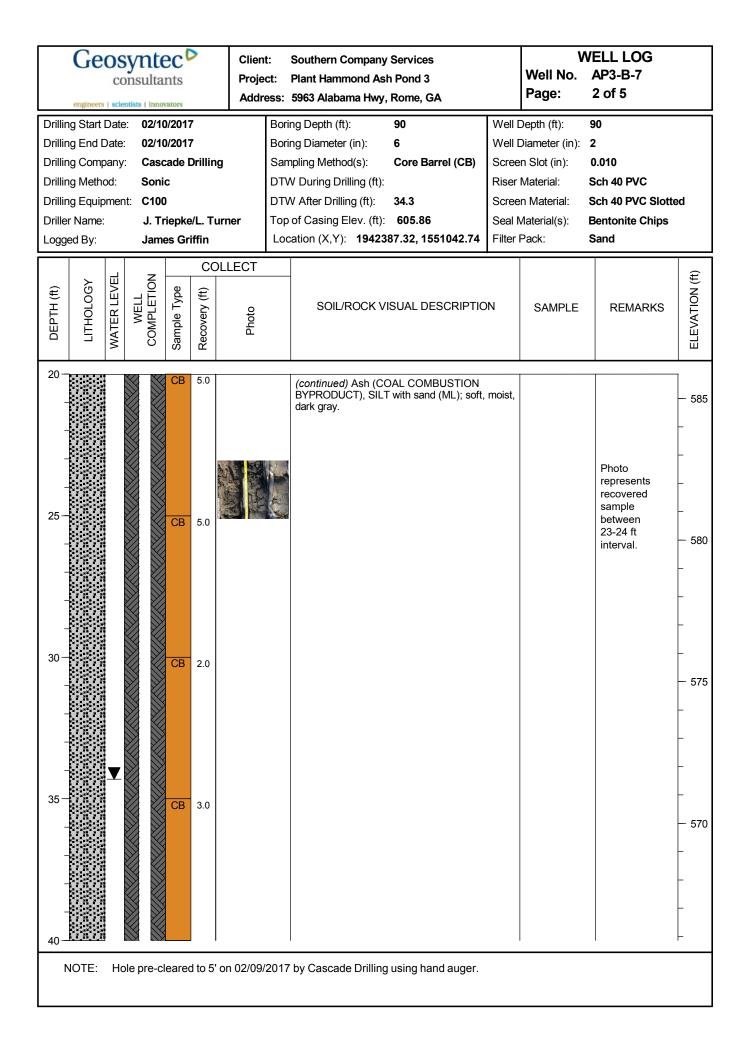

	50		TEC	ס די		^	BORING AP03-MW26 PAGE 1 OF 1 ECS37736					
SOUTHERN LOG OF TEST BORING ECS37736												
F SOUTHERN COMPANY SERVICES, INC. PROJECT Ash Pond Piezometers												
	EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING LOCATION Plant Hammond											
5	DATE STARTED 11/12/2014 COMPLETED 11/12/2014 SURF. ELEV. 584.9 COORDINATES: N:34.256360 E:-85.337470 CONTRACTOR SCS Field Services FOUNDMENT CME 550 METHOD Hollow Stem Auger: HO Back Care											
CONTRACTOR SCS Field Services EQUIPMENT CME 550 METHOD Hollow Stem Auger; HQ Rock Core DRILLED BY T. Milam LOGGED BY W. Shaughnessy CHECKED BY L. Millet ANGLE BEARING												
	BORIN	G DEPTH <u>34.3 ft.</u> GROUND WATER DEPTH: DURING	15 ft.	C	omp	D	ELAYED 15.1 ft. after 48 hrs.					
	NOTES	S _ Well installed. Refer to well data sheet.										
	GRAPHIC LOG	STRATA DESCRIPTION		SAMPLE TYPE NUMBER	SAMPLE DEPTH (ft.)	BLOW COUNTS (N-VALUE)						
	GRA		ELEV.	SAMPL		PERCENT RECOVERY (RQD)						
		Fill (CL)	583.9									
		Coal Combustion Byproduct (ASH)										
		- dark gray, dry, stiff, silt size particules				5-7-7	-					
	n	- dark gray, dry, stin, sin size particules		SS -1	3.5-5.0	(14)	-					
2												
51		- very dark gray to black, damp, soft		SS -2	8.5-	2-1-2						
	2			-2	10.0	(3)						
s l	n 🗸 🗸	- very dark gray to black, damp, soft	570.9	SS -3	13.5- 15.0	3-2-2	-					
	- 6 89 - 6	Gravelly Lean Clay (CL) - red-brown, damp, with yellow-brown mottles		-3	15.0	(4)	-					
		- red-yellow, damp, stiff, with red mottling, angular gravel		SS -4	18.5- 20.0	10-7-5 (12)						
						(/	-					
2												
		Fat Clay (CH)	561.9				-					
	0	 brown-yellow, very moist, soft, medium to high plasticity, with dark red-brown and gray mottling 		SS -5	23.5- 25.0	2-1-3 (4)						
			556.9									
200		Clayey Gravel (GC) - brown and gray, very moist, very dense, angular gravel	555.6		28.5-	50/1"						
		SHALEY LIMESTONE	555.0	-6	28.6	(100+)	Auger refusal at 29.3 ft.					
		- gray and dark gray, moderately weathered, inclined, calcite filled fractures, numerous weathered fractures,		RC	29.3-	94						
		strong HCI reaction		-1	34.3	(10)						
		_	550.6									
	-	Bottom of borehole at 34.3 feet.					· · · · · ·					
۲L												

TRANSECT B-B' LOGS

) L	og up	dated with revised survey certified 5/19/2020.				
1						BORING HGWA-122
	SO	UTHERN LOG OF TES	ST B	ORIN	G	PAGE 1 OF 1 <u>ECS37736</u>
		THERE'S COMPAREMENT SERVICES, INC.		Ash Pond Plant Ha		
		TARTED _11/20/2014 COMPLETED _11/20/2014 SURF. ELI	EV 585 0	А	COORDINA	TES: N:1551251 42 E:1941887 11
1		ACTOR SCS Field Services EQUIPMENT CME 550				
: I		D BY T. Milam LOGGED BY W. Shaughnessy CHEC G DEPTH 25.2 ft. GROUND WATER DEPTH: DURING 15 ft.				
í.		Well installed. Refer to well data sheet.			0	
	GRAPHIC LOG	STRATA DESCRIPTION	SAMPLE TYPE NUMBER	SAMPLE DEPTH (ft.)	BLOW COUNTS (N-VALUE) PERCENT RECOVERY	COMMENTS
		ELEV	, /S	SA	(RQD)	
		Clayey Sand (SC)				-
		- yellow-brown, dry, medium dense, medium to coarse grain, with yellow-red mottling 577.04	SS -1	3.5-5.0	3-7-5 (12)	
		Lean Clay (CL) - yellow-brown, damp, stiff, no to low plasticity, with red- yellow mottling, some sand	SS -2	8.5- 10.0	7-7-5 (12)	
		572.04	Ł			
L		Fat Clay (CH) - brown, wet, soft, gravelly, angular gravel, weathered ∑ bedrock	SS -3	13.5- 15.0	2-2-1 (3)	
		566.74				August 1 - 1 - 1 - 0 - 0 - 6
			RC -1	18.3- 20.2	89 (21)	Auger refusal at 18.3 ft.
		- gray and dark gray, few weathered shale seams 1/8 to 1/4 inch thick, strong HCI reaction				
		- shale seams thicker (up to 1 inch thick) and less weathered	RC -2	20.2- 25.2	96 (24)	
	<u><u></u></u>	555.84	Ļ			
		Bottom of borehole at 25.2 feet.				Easting and Northing in NAD 1983. Elevation in NAVD 88.

SCS MONITORING WELLS PLANT HAMMOND HGWA7 TO HGWA114 AND MW46D AUGUST 2020.GPJ ACP GINT LIBRARY CH.GLB 9/23/20


1915094645	RIGHER AND A	ERREDTABLISHE OFFICERE ERREDTABLISTE ERREDTABLISTE DER STERRE ERRE					an earling and a start and a start a st	
et		LOG		4	\mathbf{D}_{ℓ}	NDIA		SHEETOF
	D Soil	Systems, Inc.				<i>2</i> 9 9 9 9 9 9 9		A"PIC
		ECT Plant Hanmond		S	S <u>-</u>	-753	· · · ·	BORING No. Z-16
		CREW MEMBERS M. Mentyer						Eson DATE 12-27-76 12-28-76
	ELEV.	DESCRIPTION	DEPTH	-	s 572 v S	AMPLĚS	13	
		DESCRIPTION	FEET	NO,		BLOWS/6"		NOTES
		Im Fm sad Egrout	5.0	1	SP	15 य हिड		
		BR, Si al	10,0	2	SP	9/16/10		
			15.0	3	3P	11/17/10		
	AD.	Jane 3R. Shelo	0,05		50	11		Washoul 41.0
				+- <i>F</i>		1919110		Spt 49 1/4 pVC-
		BR sich Rigard	25.0	5	SP	15/16/14		
		Tan 3, 51 Q gaved	0.02	6	SP	3./22/12		Set 42.5 4"PVC
	·	BR. dffm sa Qqarel	35.0	7	5.P	হ্য হিচ	1	
		Tan fin sa R cl and grave	36,5	8	3P	21/8/19		
		BR. d r.	0,82	7.	92	5/8/8	•	
	· 	Soine	39.5	10	25	2/4/4	•	
	· · ·	S-re	41,0	ì]	59	2/4/5	12 12	
		BR 5. c)	12.5	15	52	475	•	
		Teach to	14.0	13	25	11/2	·13	45
		Be, cl si	\$5.5	H	JP	3/4/4	· 8	4
		size north shale	47.0	15-	5P	4/12/53	-	
		Se, weill shale	43.5	78		100/411		
		5hale	180	10	3 <u>9</u>	100+ = 1"	NSA	ec. V
		24 Lr. WL = 36.0'		16	- A			GWATOB-39,0 GW24hrs , 33,7
		The second secon					•	REFUSAL- 48,0 BORING 7-16
				· · · ·		-20		TERMINATED-49.0
		NPala NI						Marchael State State Marchael State State
]			



LOG OF BORING

SHEET LOF

Soil Systems, Inc. PROJECT PLANT HAMMOND DRILL CREW MEMBERS John Fassint/ Riakley Rolle / Meluny Gilley DATE 12-17-76 Jumple DEPTH Ballem SAMPLES NOTES DESCRIPTION ELEV. FEET NO. TYPE BLOWS/6" RECOV SP FI-COARSE SD 2-3-5 Pis tan Brai FI-med SA W/WC YUCK 10 RK frig. 6r Br si FI-SA Jors Br chyer Fi SA 2 3-3-7 310 4.5' O OUS B. FI SA CLAY DOTSBITISH YUS 4,5 3 10 FAS B Org Br clsi W/FI SA Org ton sl clapey silt 60-25 00 00 058r cl silt B Org ton sl clapey silt B Org ton FF-mod SA W/clay Org ton cl silt 77-10 4-6.8 4 6.0 3-5-6 -5-715 5-5-6 9,0 70.57 OrstAN CISILT 8-3-3 ong tANS/c/silt 8 2-2-3 120 2 2 1 Orstan s/ c/ sxl 13.5 . L. DDOrstAUTBIK S/c/s.14 (Derstauslelsi 122 1510 10 HAN & Ble Silt (wonthered Roule? 5-6-8 16.5 11 4813 +ANBO SICI SILT 18:0 12 TAN Br Macht 1 SA Silt (work thank?) ODtANBr clsi (worker?) () Bist -1 St (with A) 19.5 13 9-12-18 21.0 14 5-77-19 22,5 pWR Br SI mad-FI SA -15 22.5 2-2-2 _p23ib anger Ref. 100=1 24.0 16 17 25.5 27.0 18 35 28.5 19 32-312 1 30.0 20 . 22 16 17.4 ·Crissie 1.1.773 .7.1 \$-**1**. -1..." 1 ÷ . 1 it. 1.1 4. A. GWATOBe. 9 GW24hrs.ŀ. 23.0 ** **REFUSAL-**BORING Z14 ٠. **TERMINATED-** \mathbf{i} N

Geosyntec Consultants	Client: Project: Address:	Southern Company Services Plant Hammond Ash Pond 3 5963 Alabama Hwy, Rome, GA	Well No.	ELL LOG AP3-B-7 3 of 5		
Drilling Start Date:02/10/2017Drilling End Date:02/10/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurLogged By:James Griffin	Bori San DT DT ner Top	ng Diameter (in): 6 npling Method(s): Core Barrel (CB) V During Drilling (ft): V After Drilling (ft): 34.3 of Casing Elev. (ft): 605.86	Well E Scree Riser I Scree	Diameter (in): n Slot (in): Material: n Material:	90 2 0.010 Sch 40 PVC Sch 40 PVC Slott Bentonite Chips Sand	ed
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Recovery (ft) O	LECT Photo	SOIL/ROCK VISUAL DESCRIPTION	N	SAMPLE	REMARKS	ELEVATION (ft)
40 40 		(40') Fat CLAY with sand (CH); medium plasticity, medium stiff, moist, pale yellowish-brown, RESIDUUM. (48') Lean CLAY with gravel (CL); trace fine-coarse gravel, medium plasticity, soft, n dark reddish-brown, RESIDUUM.	noist,	Soil Grab Sample AP3-B-7 (44-45)	Photo represents recovered sample between 41-42 ft interval.	- 565 560
55 - CB 4.0 60		(55') Lean CLAY with gravel (CL); trace fine gravel, medium plasticity, very soft, saturated, light brown, HIGHLY WEATHERED LIMESTONE.		Soil Grab Sample AP3-B-7 (52-53) Soil Grab Sample AP3-B-7(56-57) Photo represents recovered sample between 5758 ft interval.	- - - 550 - -

Ceosyntec Consultants	Client:Southern Company ServicesProject:Plant Hammond Ash Pond 3Address:5963 Alabama Hwy, Rome, GA	WELL LOG Well No. AP3-B-7 Page: 4 of 5
Drilling Start Date:02/10/2017Drilling End Date:02/10/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurnLogged By:James Griffin	Boring Diameter (in): 6 Sampling Method(s): Core Barrel (CB) DTW During Drilling (ft): F DTW After Drilling (ft): 34.3 er Top of Casing Elev. (ft): 605.86	Well Depth (ft):90Well Diameter (in):2Screen Slot (in):0.010Riser Material:Sch 40 PVCScreen Material:Sch 40 PVC SlottedSeal Material(s):Bentonite ChipsFilter Pack:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Recovery (ft)	ECT g SOIL/ROCK VISUAL DESCRIPTION	SAMPLE REMARKS (1) NOLLYA III
60 - - - - - - - - - - - - -	(60') No Recovery. (65') Lean CLAY with gravel (CL); trace fine-coarse gravel, medium plasticity, very soft, saturated, dark purplish-brown, HIGH WEATHERED LIMESTONE. (70') SEDIMENTARY ROCK (LIMESTONE); moderately bedded, fresh, hard, dark bluish-smoist. (70') SEDIMENTARY ROCK (LIMESTONE); moderately bedded, fresh, hard, dark bluish-smoist.	Soil Grab recovered Sample sample _ AP3-B-7(68-69) between 67-68.5 ft interval.
NOTE: Hole pre-cleared to 5' or	02/09/2017 by Cascade Drilling using hand auger.	between 76-77 ft interval.

Ceosyntec Consultants		Southern Company Services Plant Hammond Ash Pond 3 : 5963 Alabama Hwy, Rome, GA	Well No. Page:	VELL LOG AP3-B-7 5 of 5		
Drilling Start Date:02/10/2017Drilling End Date:02/10/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurneLogged By:James Griffin	Bo Sa D1 D1 er To	pring Depth (ft):90pring Diameter (in):6pring Diameter (in):Core Barrel (CB)TW During Drilling (ft):34.3TW After Drilling (ft):34.3po of Casing Elev. (ft):605.86po action (X,Y):1942387.32, 1551042.74	Well I Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	90 2 0.010 Sch 40 PVC Sch 40 PVC Slotted Bentonite Chips Sand	1
DEPTH (ft) LITHOLOGY WATER LEVEL WATER LEVEL COMPLETION Sample Type Recovery (ft)	ECT Divoto	SOIL/ROCK VISUAL DESCRIPTIO	N	SAMPLE	REMARKS	ELEVATION (ft)
		(continued) SEDIMENTARY ROCK (LIMESTONE); moderately bedded, fresh hard, dark bluish-gray, moist.	,		6-inch diameter boring installed at 80 ft. Horizontal K = 3.70E-05 cm/ sec (from single Slug Testing screen interval between 85-90 ft; not used in modeling).	- 525 - - - - 520 - - - 515 - - - -
NOTE: Hole pre-cleared to 5' on	02/09/201	17 by Cascade Drilling using hand auger.				

LOG OF BORING

SS.

27-2

SHEET___OF___

PROJ	I Systems, Inc. IECT <u>Plant Hammond</u> L CREW MEMBERS <u>M. Mentyrd</u> , M	A Dic	S	S =	- 753 T. Ray		BORING No. <u>と- 12</u>
ELEV				S	AMPLES BLOWS/6"		NOTES
	BR. cl f-m 59	1.5	1		0/2/3	Σ.	
	BR. cl si	30	a		7/12/14		
	BR. Cl 5.	45	3	SP SP	14/18/17 7/5/3		
· · · · · · · · · · · · · · · · · · ·	52. B. 51 el	2.5	5	SP-	2/2/2		
	Same	9.0	6	SP	2/2/1	· · · · · · · · · · · · · · · · · · ·	
	SR. BR. weith shale	10.5	-	SP CO	2/1/1	~	
	BR. d s. Q shele Frigs	12.0 [?.5			0/0/109		
7.	5L-k	15:0			\$ 100+		No Ric.
						10	
						;	570.3
			· · · · · · · · · · · · · · · · · · ·				(556.7)
					· · ·		
							GWATOB- 7.0-, GW24hrs, 4.6 ,
							REFUSAL- 13, 6 BORING - 12 TERMINATED- 13, 6
					• [*		LUNNINATED-15,6
				•		. N 5	•
					-1.5		

GPC CIVIL DIVISION MATERIALS SECTION

1

TEST BORING RECORD

PROJECT PLANT HAMMEND

LOCATION ROINE BORING NO. P-22 ELEVATION _____ DATE 8-4-77

SAMPLE PENETRATION SH DEPTH CORE DESCRIPTION N NO. DEPTH IST 6' 2ND 6' 3RD 6' REC. FROM TO 25 7-11 \mathcal{O} AVGAR - NO SAMPLES SET .V PIEZOMETER AT 25'-0". 14"X5' SCREEN AUGAR - 30' FLUSLED HOLE WITH NW PASING Pin 30 SET SEREEN AT 3040" AUGAR 30 FLUSHED HOLE WITH NN 35 CASING 213 0 SET SCREEN AT 35'-0" 5'-540 25 AVGAR 25'- SET SCREEN 2 AT +0 P.23 0 25 25' 25 SEY AUGAR SCREZN 47 -0 257 75 220 0 25 AUGAR JET 5CREEN) 25' 25 2-17 47 0. 0 25 AUGAR SET SCREEN P-16 0 35 AUGAR 35 PIPE FLUSHED HOLE WITH 11 SET SCREEN AT 35-0" 2"X 5-SET 2"X 5' SCREEN AT 30' FOUSHED 210 0 30 HOLE WITH N.W. CASING 7/3 0 35 SE FLUSHED HOLE NITH NW CASING 351-"X 5 SCREEN AT AUGAR 37 FLUSHED HOLE WITH 2" 347 AT 37401 :19 :5' 0 37 SCREEN SET AT 38 Z X 5 SCEEN 22 0 AUGAR 38 FLUSHED HOLE WITH 2 PC FROM FROM REMARKS SS _____ AUGER WASH TRI-CONE ____ _____ ____CASING _____ ___CORE ____ OTHER DRILLED GWATOB GW 24 Hrs. BY BY

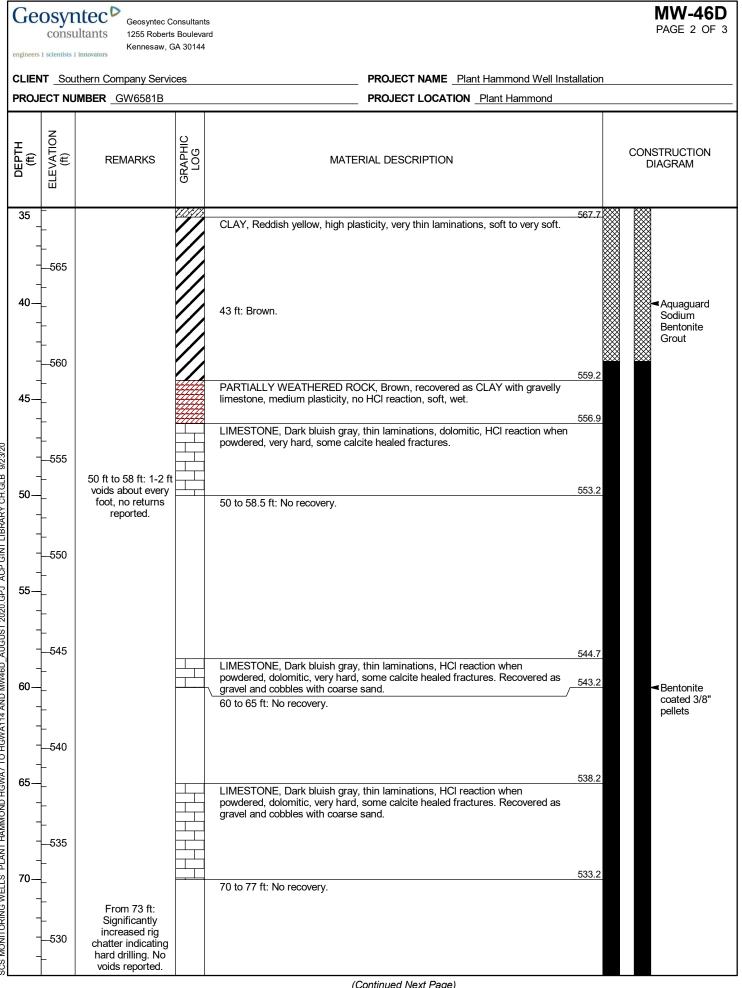
×

2H-7/76-2923-C

						BORI	NG HGWC-12
S		BC BC	RING LOG				PAGE 1 OF
SO		N COMPANY SERVICES, INC.	PROJECT Plant Ha	mmond			
EAI	RTH SC	IENCE AND ENVIRONMENTAL ENGINEERING	LOCATION Rome, 0	GA			
		TED 6/27/2016 COMPLETED 6/27/2016 SUI			ATES: <u>N: 155</u>	1067.24	E: 1942926.62
		T. Ardito LOGGED BY _W. Newton PTH _67 ft. GROUND WATER DEPTHDURING				42 6 ft	
		in Engineering Log at 47 ft. Well installed. Refer to well					
 _	<u>ں</u>						
иет н (#)	GRAPHIC LOG	MATERIAL DESCRIPTION		Natura	I Gamma		WELL DATA
Ē	GR		Elev:		- 10	Тор о	of casing Elev. = 605.82 fl
	<u> <u> </u></u>		602.83	75	150 225		
	<u>1</u> <u>1</u> <u>1</u>	Topsoil (TOPSOIL)				.5.	Surface Seal
	<u></u>		559.83				
		Lean Clay (CL)					Ň.
5							
		Gravelly Lean Clay (CLG) mottled					×
•							×.
10							
							×.
15	ø/ø						×.
		Low Plastic Organic Silt or Clay (OL)					
		Lean Clay (CL)					×.
20							×.
							Annular Fill
)))
25							×
		Coal Combustion Byproduct (ASH) Lean Clay (CL)	575.83				
0		Graveliy Lean Clay (CLG))))
			571.83				×
							X
35							Ň
		Gravelly Lean Clay (CLG) Fat Clay (CH)	565.83				
		· · · · · · · · · · · · · · · · · · ·))
40							\bowtie

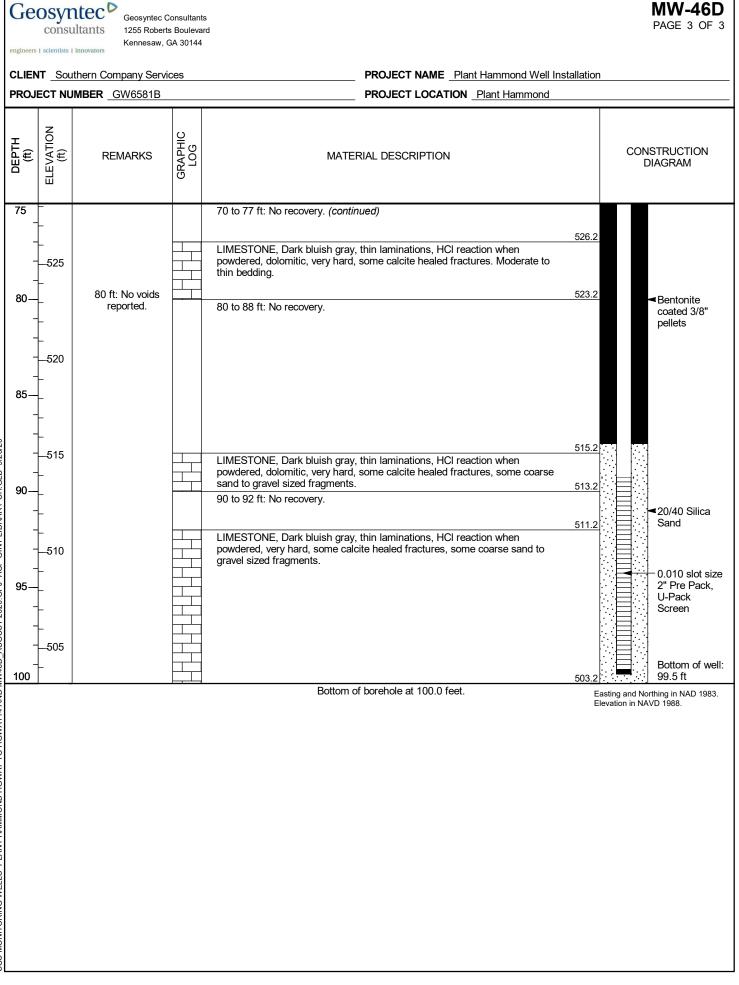
BORING LOG

BORING HGWC-120


PAGE 2 OF 2

SOUTHERN COMPANY SERVICES, INC. EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING PROJECT Plant Hammond

LOCATION Rome, GA


DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	N	atural Gar	nma	WELL DATA
		Elev:	75	150	225	Top of casing Elev. = 605.82 (CONTINUED)
45		Fat Clay (CH)(Con't)				Annular Fill
50		Z 555.83 DOLOSTONE CLS 552.83 552.83	-			Annular Seal
SYGINT/PROJECTS/HAMMOND AP-3.GP		548.83 DOLOSTONE	-			Filter Pack Screen top elevation: 548.83
3LIC/DOCUMENTS/BENTLE		535.83 Bottom of borehole at 67.0 feet.				Screen bottom Elevation: 538.83
SIMPLE GEOLOGY WITH WELL - ESEE DATABASE.GDT - 1/4/17 08:35 - C:,UUSERSIPUBLICIDOCUMENTSIBENTLEYGINTIPROJECTSIHAMMOND AP-3.GPJ						Easting and Northing in NAD 1983. Elevation in NAVD 88.

DRILLERCascade Drilling GROUND ELEVATION603.17 ft I DRILLING METHOD _Sonic TOP OF CASING ELEVATION605.72 ft GEOPHYSICAL CONTRACTOR SAMPLING METHOD _4" core 6" override GEOPHYSICAL CONTRACTOR GEOPHYSICAL CONTRACTOR RIG TYPE _Terrasonic 1051181 LOGGED BY _A. Ramsey O H_act U U U W V U U H_act U U U H_act U U U H_act U U U U V U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U	PAGE 1 OF 3
PROJECT NUMBER GW6581B PROJECT LOCATION Plant Hammond DATE STARTED 8/18/20 COMPLETED 8/18/20 NORTHING 1551056.48 ft I DRILLER Cascade Drilling GROUND ELEVATION 603.17 ft I I DRILLING METHOD Sonic TOP OF CASING ELEVATION 605.72 ft GEOPHYSICAL CONTRACTOR	
DATE STARTED 8/18/20 COMPLETED 8/18/20 NORTHING 1551056.48 ft I DRILLER Cascade Drilling GROUND ELEVATION 603.17 ft I DRILLING METHOD Sonic TOP OF CASING ELEVATION 605.72 ft SAMPLING METHOD 4" core 6" override GEOPHYSICAL CONTRACTOR	stallation
DRILLER Cascade Drilling GROUND ELEVATION 603.17 ft I DRILLING METHOD Sonic TOP OF CASING ELEVATION 605.72 ft GEOPHYSICAL CONTRACTOR GEOPHYSICAL CONTRACTOR	
DRILLING METHOD Sonic Sonic TOP OF CASING ELEVATION 605.72 ft. SAMPLING METHOD 4" core 6" override GEOPHYSICAL CONTRACTOR LOGGED BY A. Ramsey RIG TYPE Terrasonic 1051181 LOGGED BY A. Ramsey O Hard 100 Top of Casing Elevation 605.72 ft. GEOPHYSICAL CONTRACTOR NOGED BY A. Ramsey O Hard 1051181 COGGED BY A. Ramsey Hard 100 Top of Casing Elevation (0 ft to 10 ft) Material Description Image: State of the state o	EASTING 1942929.10 ft
SAMPLING METHOD _4" core 6" override GEOPHYSICAL CONTRACTOR RIG TYPE _Terrasonic 1051181 LOGGED BY _A. Ramsey H_a Image: Big _	BORING DIAMETER 6 in
RIG TYPE Terrasonic 1051181 LOGGED BY A. Ramsey H_{u} V_{u}	
Heige NO Heige REMARKS OHONO Material description Material description	
0 - - - - - - - - - - - 5 - - -	
5	
0 -595 10 -595 -590 CLAY, Reddish yellow, lean, low plasticity to non plastic, trace gravel to 1 in diameter, hard, moist. 12.8 ft: Gray, lean, laminated, firm, low plasticity to non plastic, moist. 15 -585 685 GRAVELLY CLAY, Reddish yellow, lean, low plasticity to non plastic, moist. 20 -585 21 -585 22 -585 23 -580 24 -580 25 -575 26 -570 27 -570 30 -570 31 GRAVELLY CLAY, Reddish yellow, some coarse sand, medium plasticity, fat, wet. 27 -570	

SCS MONITORING WELLS PLANT HAMMOND HGWA7 TO HGWA114 AND MW46D, AUGUST 2020.GPJ ACP GINT LIBRARY CH.GLB 9/23/20

(Continued Next Page)

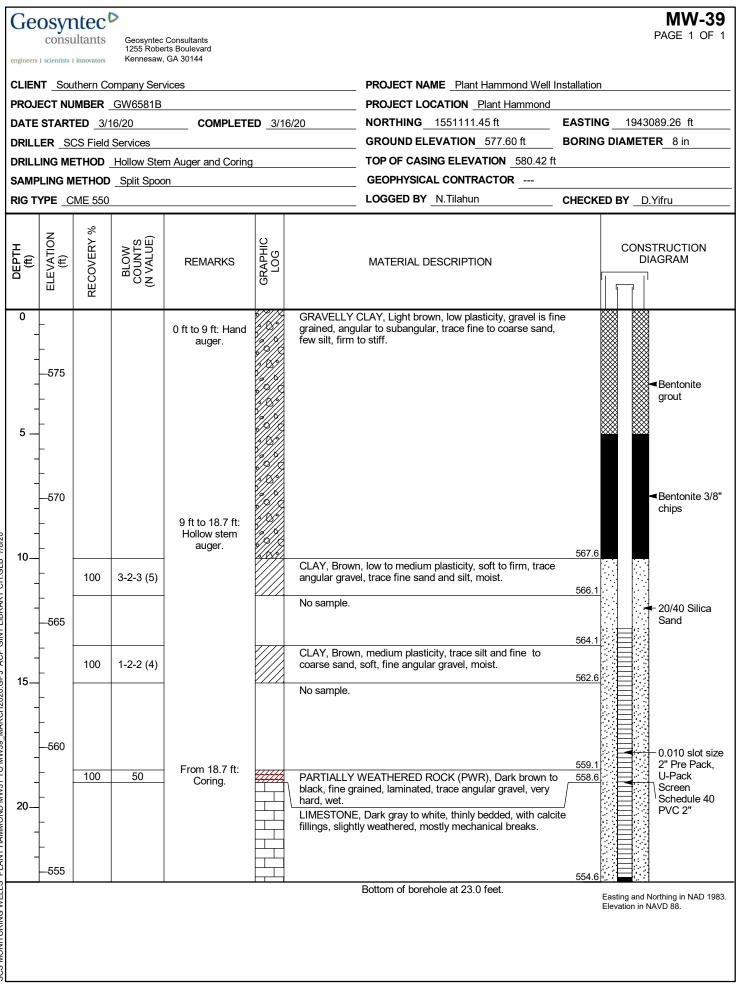
SCS MONITORING WELLS PLANT HAMMOND HGWA7 TO HGWA114 AND MW46D, AUGUST 2020.GPJ ACP GINT LIBRARY CH.GLB 9/23/20

GPC CIVIL DIVISION MATERIALS SECTION

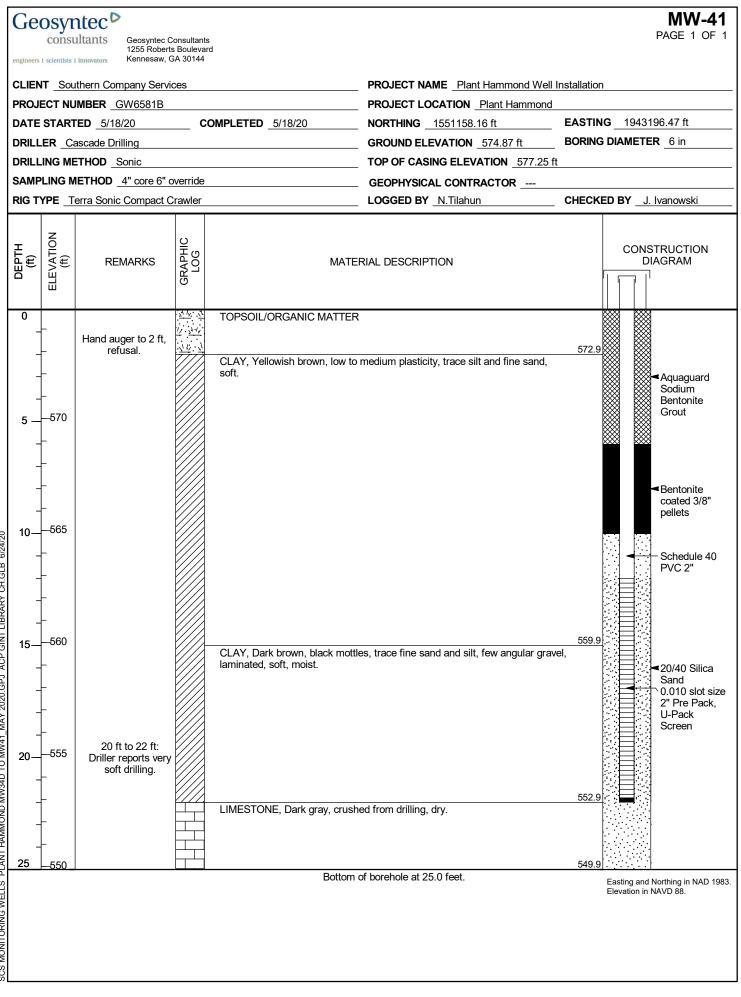
TEST BORING RECORD

PROJECT <u>PLANT</u> <u>HAMMOND</u> LOCATION <u>REME</u> BORING NO. <u>P-21</u> ELEVATION _____ DATE <u>8-1-77</u>

DEPTH SAMPLE PENETRATION CORE DESCRIPTION N FROM TO NO. DEPTH IST 6' 2ND 6' 3RD 6' REC. 23/4 AVGAR- NO SAMPLES FILL BROWN YERAY SILTY CLAY MUTOSH. 1 25 7 12 H PROBALLY FILL 30 5 2 7 12 THE GRIY SALL - TEXANER 3 3261 9 4 6 33 6 48 BROWAL SILTY CLAY FINE TO MED SAND THE GRAY EA CU - TRACACC 4 35 7 8 8 5 5 376 8 15 THEBA Si LEF RESID. 6 40' 5 6 5 GYTH SIGG -7 486.526 2 3 45 Z486 56 CORED 3'D" LIMESTONE 1!0 STO 566 CORED 5' LIMESTONE 48'' 566 616 CORED 5:0" LIMESTONE CAVITY 65:0" to 69'6" 4'6" CAVITA GIGN GOC CORED 5' FIMESTONE 3,2 166 TIG COREDS' KIMESTONE 1.9 716" TGG" CORED 5' LIMESTONE 5.4 766 814 CORED 5' LIMESTONE 5-2 BORING COMPLETE 8-2-77 FROM TO FROM TO 81% 23% 48% AUGER D 38% REMARKS SS CASING IN PLACE GWT 30' WASH <u>38'6 48'6"</u> TRI-CONE _____ SCREEN SET AT 51'-0" NUCASING <u>0</u> 48'6" NOCORE 48'6 81'6" 1 1/4" X 5' SCREEN OTHER GWATOB _____ GW 24 HRS. 28 -11 " DRILLED RK LOGGED H.M. ΒY ΒY


2M-7/76-2923-C

LOG O	F		B	OR	i I	NG	
Soil Systems, Inc.						SHEET OF	
CONTRACTED WITH DIANT HANNON	nd					BORING No. P-9	
PROJECT NAME MARCHTYARUMDIC		EW	illian	₩ JOB	No.	753 DATE 2-9-77	
ELEV. DESCRIPTION	DEPTH		SA	MPLES	· · · · · · · · · · · · · · · · · · ·	NOTES	1
	FEET	NO	. TYPE	EBLOWS/6	"RECO		-
BR. cl Sn Q SBV,	35	1 ,-	1<0	9/9/7			
- BR C 5	5 L						-
				3/4/5		-	
Ten so Cl			ŀ.	6/8/1			
TEn sa d QSRV.			:	9/15/27			
Jan cl Sq	12.5	5_	БP	41.615			
In- cl 5a, Q gravi	15.0	6	SP	Q13:15			
Ten SI	17.5	7_	\$P	2/2/3	· • • • • • • • • • • • • • • • • • • •		
BR. g.R. neath shale	30.0	8	SP	2/1/3	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
SR with stak	32.5	1	SP	\$51,5/1	·····		
Same	25.0	10	SP.	<u>_5/5/10</u>	· - · · · ·	Install PYCE 8.1 pi	pe 27.1
- Same		1		13/13/1.5	· ·	· · · · · · · · · · · · · · · · · · ·	NA. *
	30.0	12	حرك	100 t/ir	NO R	R .	
			·		· · · · · · · · · · · · · · · · · · ·		74 · · ·
			 	·····			N.S.
					· · · · · · ·	17	
					12		•••
./							
	· · ·						and a second
						GWATOB-21.0 GW24hrs	
	- 					REFUSAL- 28,1' BORING- 28,1'	
						TERMINATED-28,1'	
	.			·			- China


	OSYC consu	ntec ultants	Geosyntec 1255 Robe	Consultants rts Boulevard , GA 30144					MW-32 PAGE 1 OF 2			
	IT SOL	uthern C	company Se	ervices			PROJECT NAME Plant Hammond V	Vell Installation	1			
			GW6581E				PROJECT LOCATION Plant Hamm					
DATE	START	FED 1 ⁻	1/22/19	COMPLET	E D 11/	26/19	NORTHING 1551092.83 ft		G 1943021.47 ft			
			d Services				GROUND ELEVATION 583.10 ft	BORING	G DIAMETER 8 in			
RILL	ING M	ETHOD	HSA + Ro	ock Coring (NQ)			TOP OF CASING ELEVATION 58	5.46 ft				
DRILLING METHOD HSA + Rock Coring (NQ) SAMPLING METHOD SPT							GEOPHYSICAL CONTRACTOR					
RIG T	IG TYPE _ CME 550					LOGGED BY N.Tilahun	CHECK	HECKED BY J. Ivanowski				
DEPIH (ft)	ELEVATION (ft)	RECOVERY %	BLOW COUNTS (N VALUE)	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION					
	_				<u></u>	Top soil						
- - 5 —	- 580			0-9': Hand auger.		GRAVELLY grained, angu dense, moist	CLAY, Light brown, low plasticity, grave ular, trace fien to coarse sand and silt, n prown to dark brown.	is fine nedium				
-	- - 575			9-28.3': Hollow		firm, moist.	n, medium plasticity, trace fine sand and	silt,	■Bentonite grout			
10 	- - 			stem auger.		9 - 13.5': No	sampie.					
-	-	89	2-2-2 (4)			CLAY, Brown fine sand, fir	n, medium plasticity, trace angular grave m, moist.	l, few				
15— -	-					15 - 18.5': N	o sample.		Schedule 40 PVC 2"			
-	—565 -	89	0-0-0 (-)	18.5-20': Weight of		CLAY, Light wet.	brown, high plasticity, very soft, laminate	ed,				
20—		100	0-0-0 (-)	hammer. 20-21.5': Weight of					Bentonite 3/8 chips			
_	-	100	3-2-2 (4)	hammer.			Dark brown, with weathered limestone aminated, soft, moist to wet.					
-	560 _	22	0-1-1 (2)						arrow and arrow and arrow and arrow and arrow arr			
			+						ŀ·.: ⊒ŀ·.:			

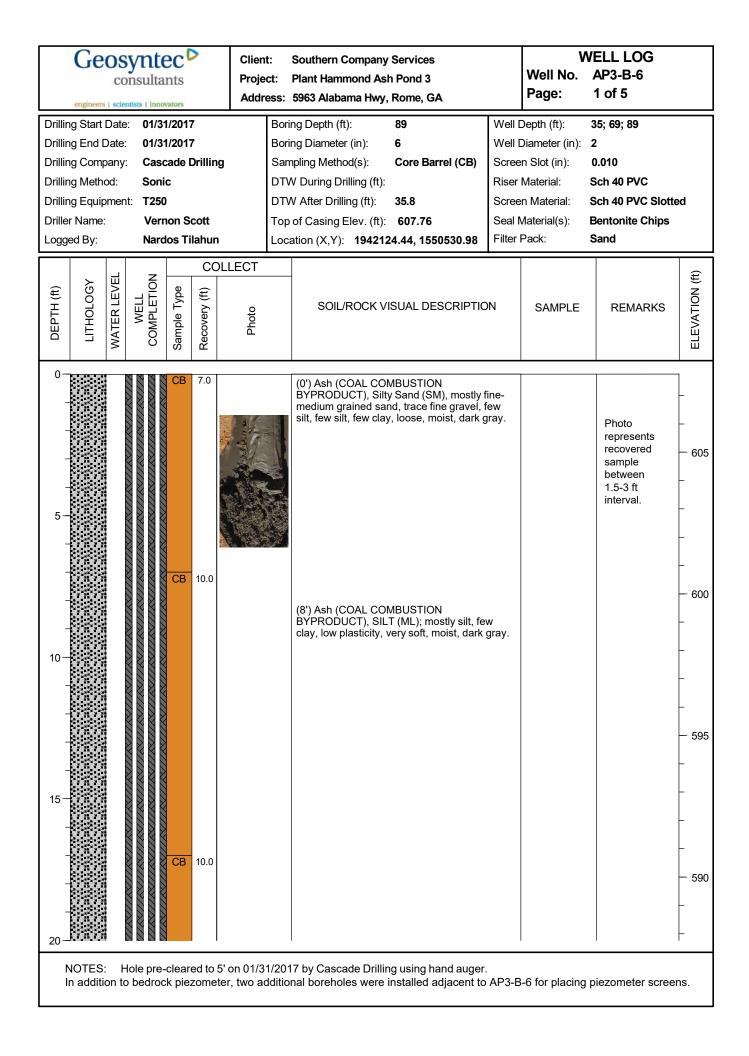
SCS MONITORING WELLS PLANT HAMMOND MW31 TO MW33_DECEMBER 2019.GPJ ACP GINT LIBRARY CH.GLB 1/10/20

	Geosyniec	ts Boulevard			MW-32 PAGE 2 OF 2
	ern Company Serv			PROJECT NAME Plant Hammond Well Install	ation
PROJECT NUME	BLOW BLOW (N VALUE) (N VALUE)	REMARKS	GRAPHIC LOG	PROJECT LOCATION Plant Hammond	CONSTRUCTION DIAGRAM
	30-40-30 (70) 17 50/3" (-) 17 50/3" (-)	From 28.3':		PARTIALLY WEATHERED ROCK (PWR), Gray, fine to coarse gravel sized limestone fragments, very hard, wet. <i>(continued)</i>	
30		Coring.		LIMESTONE, Dark gray, thinly bedded, hard, slightly weathered, with light gray to white calcite filled veins.	0.010 slot size 2" Pre Pack, U-Pack Screen
 550 35 				32 - 37': Void.	Bottom screen Elev. 549.30
					Easting and Northing in NAD 198 Elevation in NAVD 88.

SCS MONITORING WELLS PLANT HAMMOND MW31 TO MW39_MARCH2020.GPJ_ACP GINT LIBRARY CH.GLB_7/8/20

SCS MONITORING WELLS PLANT HAMMOND MW34D TO MW41 MAY 2020.GPJ ACP GINT LIBRARY CH.GLB 6/24/20

TRANSECT C-C' LOGS


CE AND EN 12/2/2014 CS Field Ser Ailam 24.4 ft. called. Refer for po of Casing Elev	EXPLICES, INC. PROJECT _Ash Pond Piezome VIRONMENTAL ENGINEERING LOCATION _Plant Hammond COMPLETED _12/3/2014 SURF. ELEV583.60CO COMPLETED _12/3/2014 SURF. ELEV583.60CO COMEDILESS CMECMECHECKED BYCOMP. COUND WATER DEPTH: DURING _5 ft. COMP. COUND WATER DEPTH: DURING _5 ft. COMP. To well data sheet.	ORDINATES: N M Auger; HQ Roc ANGLE	k Core BEARING
CE AND EN 12/2/2014 CS Field Ser Ailam 24.4 ft. called. Refer for po of Casing Elev	INVICUS, INC. VIRONMENTAL ENGINEERING LOCATION Plant Hammond COMPLETED 12/3/2014 SURF. ELEV. 583.60 CO rvices EQUIPMENT CME 550 METHOD Hollow Ster LOGGED BYW. Shaughnessy CHECKED BYMillet GROUND WATER DEPTH: DURING _5 ft. COMP to well data sheet. WELL DATA	ORDINATES: N m Auger; HQ Roc ANGLE	k Core BEARING
CE AND EN 12/2/2014 CS Field Ser Ailam 24.4 ft. called. Refer for po of Casing Elev	INVICUS, INC. VIRONMENTAL ENGINEERING LOCATION Plant Hammond COMPLETED 12/3/2014 SURF. ELEV. 583.60 CO rvices EQUIPMENT CME 550 METHOD Hollow Ster LOGGED BYW. Shaughnessy CHECKED BYMillet GROUND WATER DEPTH: DURING _5 ft. COMP to well data sheet. WELL DATA	ORDINATES: N m Auger; HQ Roc ANGLE	k Core BEARING
CS Field Ser /iilam 24.4 ft. alled. Refer f po of Casing Elev □ St	EQUIPMENT CME 550 METHOD Hollow Ster LOGGED BY W. Shaughnessy CHECKED BY L. Millet GROUND WATER DEPTH: DURING 5 ft. COMP. to well data sheet. WELL DATA	m Auger; HQ Roc ANGLE	k Core BEARING
Ailam 24.4 ft. called. Refer f po of Casing Elev	LOGGED BY _W. Shaughnessy _ CHECKED BY _L. Millet _ GROUND WATER DEPTH: DURING _5 ft COMP to well data sheet. WELL DATA	ANGLE	BEARING
24.4 ft. alled. Refer the second seco	_ GROUND WATER DEPTH: DURING _5 ft COMP to well data sheet. WELL DATA		
pp of Casing Elev	to well data sheet. : 586.27 WELL DATA	DELAYED _(6.4 ft. after 24 hrs.
op of Casing Elev □ SI	: 586.27 WELL DATA		
	. 560.27		
			COMMENTS
	otective aluminum cover with bollards; 4-foot square concrete pad		
		ELEV. [DEPTH]	
···	Surface Seal: concrete	[DEFTH]	
"] ⊢*."}.		581.60	
a 🔛	Well: 2" OD PVC (SCH 40)	[2.0]	
	Annular Fill: Cement-Bentonite Grout (1 - 94lbs. bags, 11 gal.)	580.00 [3.6]	
		[0.0]	
-	Annular Seal: 3/8 bentonite pellets (1 - 50lbs. bucket)		
	• • •		
		573.10	
		[10.5]	
	Filter: #1A silica filter sand (4 - 50lbs. bags)	570.40	
		[13.2]	
	—Screen: 10 ft 0 010" slotted		
目:		560.40	
	Sump:0.40 ft.	[23.2]	
<u></u>	Backfill:caved material	<u>560.00</u>	
		[-0.0]	Easting and Northing in NAD 1983.
		Well: 2" OD PVC (SCH 40) Annular Fill: Cement-Bentonite Grout (1 - 94lbs. bags, 11 gal.) Annular Seal: 3/8 bentonite pellets (1 - 50lbs. bucket) Filter: #1A silica filter sand (4 - 50lbs. bags) Screen: 10 ft. 0.010" slotted	S81.60 [2.0] Annular Fill: Cement-Bentonite Grout (1 - 94lbs. bags, 11 gal.) 580.00 [3.6] [3.6] Annular Seal: 3/8 bentonite pellets (1 - 50lbs. bucket) [3.6] Filter: #1A silica filter sand (4 - 50lbs. bags) 573.10 Filter: #1A silica filter sand (4 - 50lbs. bags) 570.40 [13.2] Screen: 10 ft. 0.010" slotted Sump:0.40 ft. 560.40 Sump:0.40 ft. 560.00 Backfill:caved material [23.6]

LOG OF BORING

SHEET

Soil Systems, Inc. PROJECT PLANTHANMONC ss = 753 BORING No. 7 a DRILL CREW MEMBERS DI MEATYARd. MDickerson EWilliams DATE 1-21-7

ELEV.	DESCRIPTION				SAMF						NO	TES		·	
		FEE	TIN		PE BLO	WS/6	" RECO	V.	-				<u>.</u>	·	
					e .				- 44 - 2	•	• .			- · · ·	
									5.	10		20 2	25	30.3	5
	BR of F-m 59 Q= MV.	\$ 5.C		-		-				<u></u>	ļ		影		4
	BR cl from sa Q-grav,	<u>st 3.0</u>	<u></u>	<u> </u>	2 10/1	5/10		_			· ·		12	0	
	Dorme	1.1		. SF	8	1.		<u> </u>	•	<u> `</u>	<u> </u>	1.1	/	1	
	Some -	10:0		<u>, 13+</u>	-lat	1/12			•		-7	<u> </u>	1		
4		<u>}</u>							<u> </u>		1		4.	\sum	_
	Tan 5, fm sa Q gav, Ed	15.0	, 3	SP	VÍ	zela	> 1	-		1			<u>1 :</u> 1:		$\frac{1}{2}$
		1 12.0			- V	<u>er</u>			1.	1	4.				-
	BR Sich	20.0	5 4	SP	10/2	zels	3	1	1						7
	And the state of the second second						1	1.	+.7."		1	· · ·		1	-
		. :											18	1.71	-
	GR. Shale	250	0 5	SP	151	54	12/2	-		er."	[1.1	
	(1996年),1998年1月, <u>又</u> 國王公司的總統第二日,		and the state	安		1.1.				<u> </u> .		1			
9478 P	BR. CI-SI	30	int.	-SP	15 1	a/21	1			kar sa k		· • •	1.		
		4 64													
<u></u>							р. т.	¹	N	-		-			
	Jan si tim sa	35.0	> 7	<u>sp</u>	6/8	19		_				1	· .		
								· .							
	BE CI m so Q 5 mm - 1	36.5	8	102	3/4	16	ļ.,	- · `.						·	_[
		-				<u> </u>		<u> </u>		•					
	Be sic)	38.	59	1 1 2 2 2	2/5/5	15		<u> </u>	·						
		39.5	- 40			17									4
		1320	-10	12-	>4/=	010				· :			<u> </u>		4
	SR.tan el s,	4/0		-6	2/3	1.			••••						-
		71.0	$\frac{1}{1}$	56	2/0	<u>//</u>	11				•••				4.
	Sance	425	12	SP	5/5	12	- 1						·		4
¢ .	Sec. 5 - Sec. 1	10.0		_ <u></u>		1 -								14.4 1	+.
Sana P.	BR. neeth shale with the	44.0	13	SP	1/11	2			<u> </u>				1		
# 3.1	The second s	1.00			441	<u> </u>					.	-12.5			-
<u> </u>	SR. BR weath shab	45.5	14	20	2/2	In	·····	·							+
	and a state of the second state of the	1.0	1 1 10	1 24 3	01/0	- 10	` <u>`</u>								
	Some	476				20/4	0		1						†
	A REAL MARKED AND A REAL PROPERTY OF		1.4			/		· - -		id and the					† :
<u> </u>	SR. wath shale Same	485		30	15/14	115			24			2.			1<
<u> </u>	And					~~ [ા પ્રાપ્ય કેલ		.).:						1
	Same Shale	50.0	17	<u>15P</u>	6/13	165					: <u> </u> .			En.S	ß
		-	100	5A	100				N: N	5 1	<u>;</u> [- 7]	1	-	
· · · · · · · · · · · · · · · · · · ·	Dhale 1	212	18	pp:	109	2."	NO RE	CGW	ATC)B{	40).(<u>)</u>		1
	Shale			20	(4. S. F.		11.0		24hi						1
- <u>6</u> -6		21.1	19:	SP		11/	VORE	REP	US/	AL-	50	1	-		
		<u> </u>	ļ			th <u>i</u>		BOI		2.2	_2	6		,	
	and the second		<u> </u>	·		17	· · · · · · · · · · · · · · · · · · ·	TEF			ED-	5	βīΖ		
	and the second	ţ	2								•				
			<u>~</u>					÷		•					.
i	- * * *	-			•		*-	<u>.</u>		-	• •		<u> </u>		
			L ()		e 1						1 i i i	يتي فيدس			

Geosyntec Consultants	Client: Project: Address:	Southern Company Services Plant Hammond Ash Pond 3 5963 Alabama Hwy, Rome, GA		Well No.	ELL LOG AP3-B-6 2 of 5	
Drilling Start Date:01/31/2017Drilling End Date:01/31/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:T250Driller Name:Vernon ScottLogged By:Nardos Tilahun	Bori San DT\ DT\ Top	ing Depth (ft): 89 ing Diameter (in): 6 npling Method(s): Core Barrel (CB) <i>N</i> During Drilling (ft): <i>N</i> After Drilling (ft): 35.8 o of Casing Elev. (ft): 607.76 ation (X,Y): 1942124.44, 1550530.98	Well D Scree Riser I Scree	Diameter (in): n Slot (in): Material: n Material: Material(s):	35; 69; 89 2 0.010 Sch 40 PVC Sch 40 PVC Slotte Sentonite Chips Sand	ed
DEPTH (ft) LITHOLOGY WATER LEVEL WATER LEVEL WELL COMPLETION Sample Type Recovery (ft)	_ECT oportor	SOIL/ROCK VISUAL DESCRIPTIO	N	SAMPLE	REMARKS	ELEVATION (ft)
20 25 		 (20') Ash (COAL COMBUSTION BYPRODUCT), SILT (ML); mostly silt, few low plasticity, soft, moist, black. (31') Ash (COAL COMBUSTION BYPRODUCT), SILT (ML); mostly silt, som clay, low plasticity, medium stiff, wet, darl gray. (33') Ash (COAL COMBUSTION BYPRODUCT), Well-graded SAND (SW) mostly fine-medium grained sand, trace s trace clay, well-graded, loose, wet, dark g (35') Ash (COAL COMBUSTION BYPRODUCT), SILT (ML); mostly silt, so clay, low plasticity, medium stiff, wet, darl gray. (37') SILT (ML); few fine-medium sand, so silt, mostly clay, nonplastic, soft, wet, light yellowish-brown, laminated, RESIDUUM. 	ne k jilt, jray. me k	Soil Grab Sample AP3-B-6(20-21)	Photo represents recovered sample between 20-21 ft interval. Horizontal K = 4.13E-02 cm/sec (from Slug Testing screen interval 25-35 ft). Photo represents recovered sample between 37-38 ft interval.	- 585 585 580 575
		7 by Cascade Drilling using hand auger. nal boreholes were installed adjacent to <i>i</i>	AP3-B-	6 for placing p	iezometer screen	s.

Ceosyntec Consultants	Project:	Southern Company Services Plant Hammond Ash Pond 3 5963 Alabama Hwy, Rome, GA		Well No.	ELL LOG AP3-B-6 3 of 5	
Drilling Start Date:01/31/2017Drilling End Date:01/31/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:T250Driller Name:Vernon ScottLogged By:Nardos Tilahun	Bori San DTV DTV Top	ng Depth (ft): 89 ng Diameter (in): 6 npling Method(s): Core Barrel (CB) V During Drilling (ft): V After Drilling (ft): 35.8 of Casing Elev. (ft): 607.76 ation (X,Y): 1942124.44, 1550530.98	Well Di Screen Riser M Screen	iameter (in): 2 Slot (in): 4 Iaterial: 5 Material: 5 aterial(s): 6	35; 69; 89 2 0.010 Sch 40 PVC Sch 40 PVC Slotte Sentonite Chips Sand	ed
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Recovery (ft)	LECT otourde	SOIL/ROCK VISUAL DESCRIPTIO	N	SAMPLE	REMARKS	ELEVATION (ft)
40 40 50 50 40 50 50 50 50 50 50 50 50 50 5		 (40') Elastic SILT (MH); few fine sand, som mostly clay, low plasticity, soft, wet, light yellowish-brown, RESIDUUM. (42') Elastic SILT (MH); few fine sand, sor silt, mostly clay, low plasticity, soft, wet, ligy yellowish-brown, RESIDUUM. (47') Lean CLAY (CL); trace silt, mostly clay medium plasticity, soft, wet, light yellowish-brown, RESIDUUM. 	me ght A	Shelby Tube P-3-B-6(40-42 Soil Grab Sample vP3-B-6(42-43)	the second borehole drilled adjacent to the first borehole.	- 565
55- 55- CB 11.0		 (54') Lean CLAY (CL); trace silt, mostly clay medium plasticity, soft, wet, dark brown, laminated clay, RESIDUUM. (57') Lean CLAY (CL); trace silt, mostly clay medium plasticity, soft, wet, dark brown, RESIDUUM. (58.5') Sandy fat CLAY (CH); some fine san some silt, little clay, high plasticity, medium 	ıy, ınd,		Photo represents recovered sample between 57-58 ft	- - - - 550

Drilling End Date: 01/ Drilling Company: Ca: Drilling Method: Soi Drilling Equipment: T2: Driller Name: Ve	50 rnon Scott rdos Tilahun	Bori San DTV DTV Top	ing Depth (ft): ing Diameter (in): npling Method(s): W During Drilling (ft): W After Drilling (ft): o of Casing Elev. (ft):	6 V Core Barrel (CB) F	Well Diameter (in): Screen Slot (in):	35; 69; 89 2 0.010	
EPTH (ft) THOLOGY TER LEVEL WELL			ation (X,Y): 194212	607.76	Screen Material: Seal Material(s):	Sch 40 PVC Sch 40 PVC Slotte Bentonite Chips Sand	d
CC NA LL D	Sample Type Recovery (ft)	LECT opord	SOIL/ROCK VI	SUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
			(64') Sandy lean CLA some medium-coarse medium plasticity, m black, HIGHLY WEA (69') SEDIMENTARY thinly bedded, slight black, wet, reacted w to white calcite filling	Y (CL); trace fine grave e sand, some silt, little c edium stiff, saturated, THERED LIMESTONI (ROCK (LIMESTONE); y weathered, hard, vith HCl, some light gra	AP3-B-6(60-61 AP3-B-6(64-65 Sample AP3-B-6(64-65	Testing screen interval 59-69 ft).	- 545 - 545

Geosyntec consultants	Client: Project: Address:	Southern Company Services Plant Hammond Ash Pond 3 5963 Alabama Hwy, Rome, GA		V Well No. Page:	VELL LOG AP3-B-6 5 of 5	
Drilling Start Date:01/31/2017Drilling End Date:01/31/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:T250Driller Name:Vernon ScottLogged By:Nardos Tilahun	Bor Sar DTV DTV Top	ring Depth (ft): 89 ring Diameter (in): 6 mpling Method(s): Core Barrel (CB) W During Drilling (ft): W After Drilling (ft): 35.8 p of Casing Elev. (ft): 607.76 cation (X,Y): 1942124.44, 1550530.98	Well I Scree Riser Scree Seal N	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	35; 69; 89 2 0.010 Sch 40 PVC Sch 40 PVC Slotte Bentonite Chips Sand	ed
DEPTH (ft) LITHOLOGY WATER LEVEL WATER LEVEL COMPLETION Sample Type Recovery (ft)	ect oporde	SOIL/ROCK VISUAL DESCRIPTI	ON	SAMPLE	REMARKS	ELEVATION (ft)
		(continued) SEDIMENTARY ROCK (LIMESTONE); thinly bedded, fresh, ha black, wet, reacted with HCl, some ligh gray to white calcite fillings.	ırd, t		Horizontal K = 6.22E-05 cm/sec (from Slug Testing screen interval 79-89 ft).	- - 52! - - - - 52(
90	nn 01/31/20	117 by Cascade Drilling using hand auge	r.			

		synte consulta		>	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	h Pond 3	BC Boring No. Page:	RING LOG AP3-B-10 1 of 5	
Drilling St Drilling Er Drilling Co Drilling Mo Drilling Eo Driller Nat Logged B	nd Date ompan ethod: juipme me:	e: 02/10 y: Caso Soni ent: C100 Jere	6/2017 cade I c)	7 Drilling riepke			Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	100 6 Core Barrel (CE 35 39.8 608.69 1942345.89, 1	-	
DEPTH (ft)	WATER LEVEL	BORING COMPLETION	Sample Type	Recovery (ft) O	OD CONTRACT	SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
			СВ	5.0		grained sand, some gray. (4') Between 4 ft and (5') Some brown sat trace of fine gravel. (5.5') Pale and dark (10') Layers/zones of	ty SAND (SM); mostly fine e silt, loose, moist, dark d 5 ft, Sandy SILT. ndy SILT, low plasticity and		Photo represents recovered sample between 1-3 ft interval.	- 605 605 600
						(15.5') Band of pale (18') Zone of sandy	gray SAND with SILT. SILT.		Photo represents recovered sample between 16-17.5 ft interval.	- - - 590 -
NOTI	Е: В	orehole s	et ou	tside c	overhead powe	er line corridor.				

Drilling Start Date: 02/14/2017 Boring Depth (ft): 100 Drilling Company: Cascade Drilling Sampling Methods): Core Barrel (CB) Drilling Company: Cascade Drilling Sampling Methods): Core Barrel (CB) Drilling Company: Sampling Methods): Sampling Methods): Sampling Methods): Sampling Methods): Logged By: Christine Hug SolL/ROCK VISUAL DESCRIPTION SAMPLE REMARKS 20 SolL/ROCK VISUAL DESCRIPTION SAMPLE SolL/ROCK VI	Geosyntec consultants	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	h Pond 3		ORING LOG AP3-B-10 2 of 5	
U DOULT SolLROCK VISUAL DESCRIPTION SAMPLE REMARKS F 20 00.10 H	Drilling End Date:02/16/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:Jeremy Triepke			Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft):	6 Core Barrel (Cl 35 39.8 608.69		
25 -			SOIL/ROCK V	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
40 570			BYPRODÚCT), Šilt grained sand, some gray. (22') Band of browr SAND/sandy CLAY (25') Silty SAND. (25') Silty SAND.	y SAND (SM); mostly fine e silt, loose, moist, dark n and orange clayey f, trace of gravel. f, trace of gravel. ery. Believed to be Ash ION BYPRODUCT).		water added by driller. Photo represents recovered sample between 25-26 ft	- - - 580 - -
NOTE: Borehole set outside overhead power line corridor.	40					represents recovered sample between 35.5-36.5 ft	- - - 570 -

45 45 45 45 45 50 50 50 50 50 50 50 50 50 5			CO		nts	>	1 '	Southern Company Plant Hammond As 5963 Alabama Hwy	sh Pond 3	BC Boring No. Page:	RING LOG AP3-B-10 3 of 5	
(i) Asymptotic processing of the procesing of the processing of the processing of the proces	Drillin Drillin Drillin Drillin Driller	g End I g Comp g Metho g Equip r Name:	Date: bany: od: omen	02/16 Casc Sonie at: C100 Jere	6/2017 cade I c my T	7 Drillin riepke	-		Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft):	6 Core Barrel (CE 35 39.8 608.69	-	
40 Lean CLAY (CL); trace fine gravel, few fine recovered sample between stand, trace sit, mosty day, medium plasticity, soft, wet, orange, with minor pale red staining/mottling, RESIDUUM. Photo represents recovered sample between 40-41 ft interval. 45 (43) From 43 ft with pale gray, horizontal lamination and mottling. - 560 45 (45) From 45 ft increasing silt content, orange, dark orange and gray motiled. Trace of weakly comented, dark orange sandy pebbles. - 560 50 (50) Becoming pale brown with dark orange. With some sand. - 560 50 (50) Becoming pale brown with dark orange. With some sand. - 560 50 (50) Becoming pale brown with dark orange. With some sand. - 560 50 (50) Becoming pale brown with dark orange. With some sand. - 560 50 (50) Becoming pale brown with dark orange. With some sand. - 560 50 (50) Becoming pale brown with dark orange. With some sand. - 560 50 (51) With brown to dark brown mottling, some fine-coarse gravel, little fine-medium sand, mostly dark gray, limestone, with some white calcareous versing, up dark diameter, HIGHLY WEATHERED LIMESTONE. Photo represents recovered sample between s5-56.5 ft	DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	BORING COMPLETION	Sample Type			SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
(57.5') With angular fragments of limestone up to 5 inches in diameter. Limestone is dark gray,								 sand, trace silt, mos soft, wet, orange, w staining/mottling, RI (43') From 43 ft with lamination and mott (45') From 45 ft incr dark orange and gracemented, dark orange cemented, dark orange (50') Becoming pale With some sand. (53') With brown to fine grained sand. (54') Gravelly lean C fine-coarse gravel, I mostly clay, mediur wet, dark gray, darl dark gray, limeston calcareous veins, u WEATHERED LIM (57.5') With angular to 5 inches in diame 	 thy clay, medium plasticity, the minor pale red ESIDUUM. a pale gray, horizontal ling. breasing silt content, orange, ny mottled. Trace of weakly nge sandy pebbles. brown with dark orange. brown with dark orange. cLAY (CL) with sand; some title fine-medium sand, n plasticity, medium stiff, k brown. Gravel is angular, e, with some white pito 4' diameter, HIGHLY ESTONE. fragments of limestone up ter. Limestone is dark gray, 		represents recovered sample between 40-41 ft interval. Photo represents recovered sample between	- 565 - 565 - 550 - 550 - 550

65 gray, increasing gravel content with depth. Gravel is dark gray limestone. with cobbles of limestone up to 4 inches in diameter, HIGHLY WEATHERED LIMESTONE. Photo represents recovered sample between 66-68 ft interval. 70 66') Dry. (67') Wet. (68') Increasing size of limestone fragments, intact pieces of core up to 3 inches length. Driller reported harder drilling, adding more water. Fines in cuttings possibly washed away. Driller reported harder drilling, adding more water. Fines in cuttings possibly washed away. 75 (75') No Recovery. (75') No Recovery. From 76' to end of una 80' driller reported very soft drilling, rods can be pushed through			co		nts	>	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	sh Pond 3		ORING LOG AP3-B-10 4 of 5	
(i) (Drillin Drillin Drillin Drillin Drille	ng End I ng Comp ng Metho ng Equip r Name:	Date Dany od: Dmer	: 02/16 : Caso Sonie nt: C100 Jere	6/2017 cade [c my T	7 Drillin riepke	-		Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft):	6 Core Barrel (CI 35 39.8 608.69	-	
65 66 (61') No limestone cobbles, trace of fine gravel only. 545 65 (63') Clayey GRAVEL (GC); some fine-coarse grained gravel, some clay, wet, dark brown, and grav, increasing gravel content with depth. 545 66 (66') Dry. (66') Dry. (66') Dry. (66') Dry. (66') Increasing size of limestone fragments, intact pieces of core up to 3 inches length. Driller reported harder drilling, adding more with gravel from 72.5'. Fines possibly washed away. Driller reported harder drilling, or 70' Thi interval. 70 (70') SEDIMENTARY ROCK (LIMESTONE); think) bedded, fresh, hard, dark gray, moist, with calcite veins. Drilled as gravel size fragments between 0 (67') Wet. Driller reported harder drilling, adding more water. Fines in cuttings possibly washed away 75 (70') SEDIMENTARY ROCK (LIMESTONE); think) bedded, fresh, hard, dark gray, moist, with calcite veins. Drilled as gravel size fragments between 0 adding more water. Fines in cuttings possibly washed away 540 76 (75') No Recovery. From 76' to end of run at 80' driller reported wery soft through _ pushed through _	DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	BORING COMPLETION	Sample Type			SOIL/ROCK V	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
			Bc		СВ	5.0	Overhead power	 (63') Clayey GRAVE grained gravel, som gray, increasing gra Gravel is dark gray I limestone up to 4 in WEATHERED LIME (66') Dry. (67') Wet. (68') Increasing size intact pieces of core (70') SEDIMENTAR thinly bedded, fresh calcite veins. Drilled between 70 and 72. with gravel from 72. away. (75') No Recovery. 	EL (GC); some fine-coarse e clay, wet, dark brown, and vel content with depth. imestone. With cobbles of ches in diameter, HIGHLY ESTONE. e of limestone fragments, e up to 3 inches length. EY ROCK (LIMESTONE); hard, dark gray, moist, with as gravel sized fragments 5', and cobbles of limestone		represents recovered sample between 66-68 ft interval. Driller reported harder drilling, adding more water. Fines in cuttings possibly washed away Photo represents recovered sample between 70-71 ft interval. From 76' to end of run at 80' driller reported very soft drilling, rods can be pushed through material with minimal pressure. Rods do not sink under own	- 545

		CO		nts	>	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	h Pond 3	BC Boring No. Page:	PRING LOG AP3-B-10 5 of 5	
Drilling S Drilling E Drilling C Drilling N Drilling E Driller Na Logged I	End D Compa Metho Equipr lame:	ate: any: d:	02/16 Caso Sonio t: C100	6/2017 cade I c my T	7 Drilling riepke	-		Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	100 6 Core Barrel (CE 35 39.8 608.69 1942345.89, 1		
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	BORING COMPLETION	Sample Type	Recovery (ft)	OLLECT oport	SOIL/ROCK V	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
				СВ	5.0		thinly bedded, mode gray, wet, drilled as inches diameter. Dri (83') From 83.5' dry (85') No Recovery. (85') No Recovery.	Y ROCK (LIMESTONE); ly weathered, hard, dark cite veins. Drilled as cobbles		Between 80 ft and 82 ft, driller reported very soft drilling. From 80 ft no water used for drilling to attempt to recover soft material. From 82' to 85': Hard drilling, slow progress. Loss of circulation between 85 and 88'. Between 85 ft and 87 ft soft drilling with no resistance during drilling. Moderately hard and slow drilling from 88' to 100', rig occasionally chatters. 6" casing installed to 88'. No loss of circulation or soft zones encountered between 88' and 100'. Photo	- - - - - - - - - - - - - - - - - - -
				СВ	3.0			Y ROCK (LIMESTONE); , hard, dark gray, moist. ated.		represents recovered sample between 92-93 ft interval.	- 510
NO	TE:	Во	rehole s	et ou	tside o	overhead powe	r line corridor.				

					>	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	sh Pond 3	BC Boring No. Page:	ORING LOG AP3-B-9 1 of 6	
Drillin Drillin Drillin Drillin Driller	Drilling Start Date: 02/08/2017 Drilling End Date: 02/09/2017 Drilling Company: Cascade Drilling Drilling Method: Sonic Drilling Equipment: C100 Driller Name: J. Triepke/L. Turner Logged By: James Griffin							Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	105 6 Core Barrel (CE 38.5 605.50 1942654.24, 15	-	
DEPTH (ft)	ГІТНОГОЄУ	WATER LEVEL	BORING COMPLETION	Sample Type	Recovery (ft)	OLLECT op ed ed	SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
0 - - - - - - - - - - - - - - - - - - -	IOTE:	Hc		СВ	4.0 5.0 5.0	on 02/08/2017	fine-coarse gravel, soft, moist, dark gra (6') Ash (COAL CO BYPRODUCT), SII fine-coarse gravel, brown. (7') Ash (COAL CO BYPRODUCT), SII gravel, soft, moist,	T with gravel (ML); trace trace fine-medium sand, ay. MBUSTION T with gravel (ML); little stiff, moist, pale yellowish- MBUSTION T with sand (ML); trace fine dark gray.		Photo represents recovered sample between 1-2 ft interval.	- 605
N	NOTE: Hole pre-cleared to 5' on 02/08/2017 by Cascade Drilling using hand auger.										

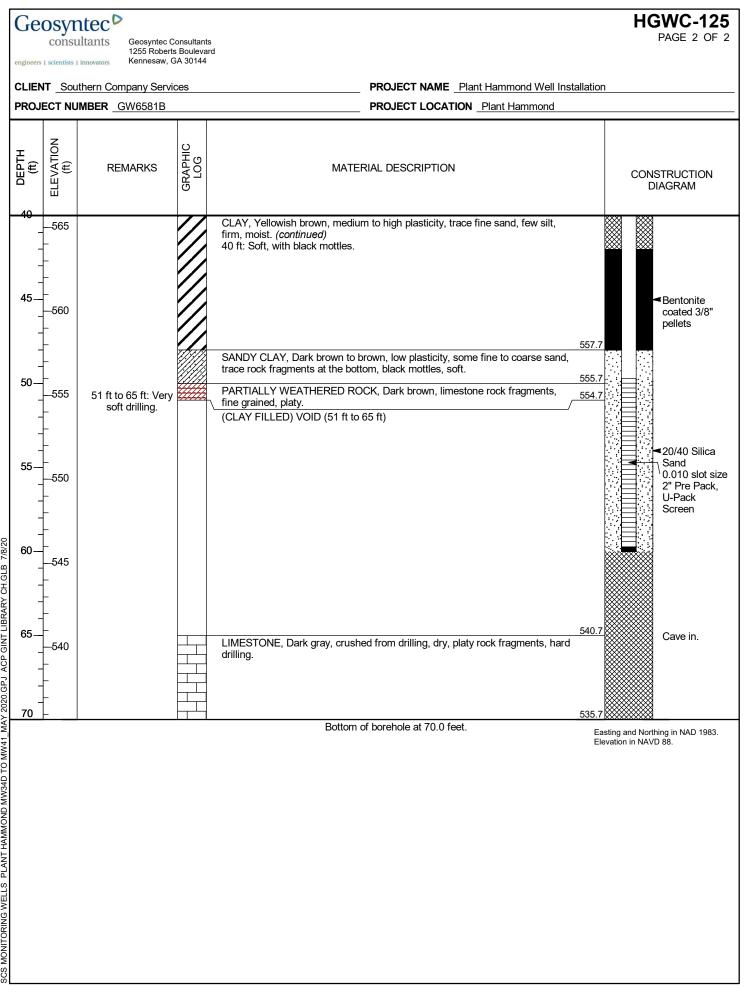
Geosyntec consultants		rn Company ammond As labama Hwy	h Pond 3	BC Boring No. Page:	RING LOG AP3-B-9 2 of 6				
Drilling Start Date:02/08/2017Drilling End Date:02/09/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurnLogged By:James Griffin	er		Boring Diameter (in):	105 6 Core Barrel (CE 38.5 605.50 1942654.24, 15					
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft) DO		OIL/ROCK V	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)			
20 25 25 CB 4.0 CB CB CB CB CB CB CB CB CB CB	BYPRC gravel,	DUCT), SIL soft, moist, d); trace fine-coarse gravel, iff, moist, pale SIDUUM.	Soil Grab Sample AP3-B-9(38-39)	Photo represents recovered sample between 37-38.5 ft interval.	- 585 580 575 570 			
NOTE: Hole pre-cleared to 5' or	NOTE: Hole pre-cleared to 5' on 02/08/2017 by Cascade Drilling using hand auger.								

Geosyntec Consultants	Project: Pla	outhern Company ant Hammond Asl 63 Alabama Hwy,	h Pond 3	BC Boring No. Page:	PRING LOG AP3-B-9 3 of 6				
Drilling Start Date:02/08/2017Drilling End Date:02/09/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurrLogged By:James Griffin	ner		Boring Diameter (in):	105 6 Core Barrel (CE 38.5 605.50 1942654.24, 15					
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft) D	LECT	SOIL/ROCK VI	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)			
40 - CB + 4.0 $45 - CB + 0$ $45 - CB + 0$ $50 - CB + 0$ $CB + 0$	(41) pa (41) pa RE (42) fin mer vvi	55') Fat CLAY with he-coarse gravel, medi eyellowish-brown ESIDUUM. (7') Lean CLAY with he-coarse gravel, fe edium plasticity, so eddish-brown, no re /EATHERED LIME	gravel (CH); some ledium plasticity, stiff, moist, , no reaction with HCl, n gravel (CL); some w medium-coarse sand, ft, moist, light eaction with HCl, HIGHLY STONE.	Soil Grab Sample AP3-B-9(44-45) Soil Grab Sample AP3-B-9(49-50) Soil Grab Sample AP3-B-9(53-54)	Photo represents recovered sample between 53-54 ft interval. Photo represents recovered sample between 56-57 ft interval.	- 565 			
NOTE: Hole pre-cleared to 5' or									

	C	synte onsulta	nts	>	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	sh Pond 3	BC Boring No. Page:	ORING LOG AP3-B-9 4 of 6	
Drilling Sta Drilling End Drilling Cod Drilling Me Drilling Equ Driller Nam Logged By	d Date mpany thod: uipme ne:	e: 02/09 y: Caso Soni nt: C100 J. Tr	9/2017 cade I c	7 Drilling 9/L. Tur			Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	105 6 Core Barrel (CE 38.5 605.50 1942654.24, 15	-	
DEPTH (ft) LITHOLOGY	WATER LEVEL	BORING COMPLETION	Sample Type	Recovery (ft)	LECT op ed	SOIL/ROCK V	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
			СВ	0.0		moderately bedded, dark bluish-gray, mo	Y ROCK (LIMESTONE); slightly weathered, hard, bist.		60-70 ft drilling head drop; unknown amount of water loss 6-inch diameter	- 545
		ole pre-cl	eared		on 02/08/2017	(75') No Recovery.	g using hand auger.		acasing installed at 75 ft. 75-80 ft soft drilling, rods advanced by pushing drill head down; no rotation or vibration Fracture at 75.9 ft (198 mm)	- 530 - - -

Geosyntec Consultants	Client: Southern Company Project: Plant Hammond As Address: 5963 Alabama Hwy	sh Pond 3	BC Boring No. Page:	PRING LOG AP3-B-9 5 of 6	
Drilling Start Date:02/08/2017Drilling End Date:02/09/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurrLogged By:James Griffin	ier	Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	105 6 Core Barrel (CE 38.5 605.50 1942654.24, 15		
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft)	SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
80 - - - - - - - - - - - - -	(continued) No Rec	overy.		(obtained from Geophysical Log) Geophysical logging terminated at 76.5 ft due to borehole collapse. 75-95 ft soft drilling.	- 525 - - - - - - - 515 - - - -
95 CB 3.0	(95') SEDIMENTAR moderately bedded, moist.	Y ROCK (LIMESTONE); fresh, hard, dark bluish-gray,		Photo represents recovered sample between 95-96 ft interval.	- - 510 - -
NOTE: Hole pre-cleared to 5' or	n 02/08/2017 by Cascade Drilling	using hand auger.			

Ceosyntec Consultants	Client: Southern Company Project: Plant Hammond As Address: 5963 Alabama Hwy	h Pond 3	BC Boring No. Page:	ORING LOG AP3-B-9 6 of 6	
Drilling Start Date:02/08/2017Drilling End Date:02/09/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurnLogged By:James Griffin	er	Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	105 6 Core Barrel (CE 38.5 605.50 1942654.24, 15		
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft) DO		ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
	(continued) SEDIME (LIMESTONE); mod dark bluish-gray, mod	lerately bedded, fresh, hard, ist.		Photo represents recovered sample between 100-101 ft interval.	- 505 - - - - 500 - -


Image: Construction of the construc		con	sultan	its		Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	h Pond 3	BC Boring No. Page:	DRING LOG AP3-B-4 1 of 4	
(1) H_H_H_H_H_H_H_H_H_H_H_H_H_H_H_H_H_H_H_	Drilling Er Drilling Co Drilling Mo Drilling Ec Driller Nat	nd Date: ompany: ethod: quipment: me:	02/02/ Casca Sonic T250 Verno	2017 ade D on Sc	rilling			Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft):	6 Core Barrel (Cl 41.3 608.39		(ST)
5 CB 10.0 8.5 Image: Construct of the second	DEPTH (ft)	WATER LEVEL	BORING COMPLETION	Sample Type			SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
15 6 10.0 (17') Lean CLAY with gravel (CL); little fine-coarse gravel, few fine-medium sand, trace silt, mostly clay, medium plasticity, medium stiff, moist, light brown to dark brown, FILL. NOTE: Hole pre-cleared to 5' on 02/02/2017 by Cascade Drilling using hand auger.		E: Hole	pre-cle	СВ	10.0	n 02/02/2017	 medium plasticity, si (2') Lean CLAY with fine-coarse gravel, f silt, mostly clay, med moist, light brown to (5') Silty SAND (SM sand, few fine-coars medium dense, moist (6') Lean CLAY (CL medium plasticity, si reddish-brown, FILL (7') Lean CLAY (CL trace fine-medium si medium plasticity, m brown, FILL. (17') Lean CLAY with fine-coarse gravel, f silt, mostly clay, med moist, light brown to 	th gravel (CL); little ew fine-medium sand, few dium plasticity, medium stiff, dark gray, FILL.); mostly fine-coarse grained se gravel, little silt, trace clay, st, dark yellowish-gray, FILL.); few silt, mostly clay, tiff, moist, light); trace fine-coarse gravel, and, few silt, mostly clay, hedium stiff, moist, light the gravel (CL); little ew fine-medium sand, trace dium plasticity, medium stiff, o dark brown, FILL.	Sample	represents recovered sample between 0-1 ft interval.	- 605 605 600

Geosyntec Consultants	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	h Pond 3	BC Boring No. Page:	ORING LOG AP3-B-4 2 of 4	
Drilling Start Date:02/02/2017Drilling End Date:02/02/2017Drilling Company:Cascade DrillDrilling Method:SonicDrilling Equipment:T250Driller Name:Vernon ScottLogged By:Nardos Tilaho			Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	77 6 Core Barrel (CE 41.3 608.39 1942920.34, 15	3), Shelby Tube (50709.19	ST)
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft)	OLLECT op de	SOIL/ROCK V	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
		fine-coarse gravel, f silt, mostly clay, me moist, light brown to (27') Fat CLAY with gravel, little fine-me	LAY with gravel (CL); little ew fine-medium sand, trace dium plasticity, medium stiff, dark brown, FILL.		Photo represents recovered sample between 20-21 ft interval. Photo represents recovered sample between 27-28 ft interval.	- - - 585 - - - - - 580 -
35 40 NOTE: Hole pre-cleared to		mostly fine grained a loose, moist, light ye (35') Fat CLAY with gravel, little fine-me clay, high plasticity, brown, angular grav (39') Fat CLAY with gravel, little fine-me	gravel (CH); little fine-coarse dium sand, little silt, mostly medium stiff, moist, light els, possibly FILL. gravel (CH); little fine-coarse dium sand, little silt, mostly	Soil Grab Sample AP3-B-4(36-37) Shelby Tube AP-3-B-4(37-39)	Photo represents recovered sample between 34-35.5 ft interval. Vertical K = 2.10E-08 cm/sec	- 575 - - - 570

	ovators	Address:	5963 Alabama Hwy	h Pond 3 , Rome, GA	Boring No. Page:	AP3-B-4 3 of 4	
Drilling End Date:02/0Drilling Company:CaseDrilling Method:SorDrilling Equipment:T25Driller Name:Ver				Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	77 6 Core Barrel (CE 41.3 608.39 1942920.34, 15	3), Shelby Tube (ST) 50709.19	7)
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION	Sample Type Recovery (ft)	LECT	SOIL/ROCK V	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
			(43') Fat CLAY (CH) little silt, mostly clay, moist, light yellowish possibly FILL. (44') Fat CLAY (CH trace fine-medium s medium plasticity, m yellowish-brown, RE (47') Lean CLAY (CI trace fine-medium s medium plasticity, m yellowish-brown, RE (48') Sandy lean CL sand, few silt, mostly soft, wet, light yello' (50') Fat CLAY (CH medium plasticity, m brown, RESIDUUM.); trace fine-medium sand, , high plasticity, medium stiff, i-brown, angular gravels, and, trace fine-coarse gravel, and, trace silt, mostly clay, hedium stiff, moist, light SIDUUM. L); trace fine-coarse gravel, and, trace silt, mostly clay, hedium stiff, moist, light SIDUUM. AY (CL); some fine-medium y clay, medium plasticity, wish-brown, RESIDUUM. I); trace silt, mostly clay, hedium stiff, moist, dark	Soil Grab Sample AP3-B-4(44-45) Soil Grab Sample AP3-B-4(49-50)	Photo represents recovered sample between 47-49 ft interval. Horizontal K = 9.25E-04 cm/sec (from single Packer Testing between 53.5-58.5 ft). 6-inch diameter casing installed at 55 ft. Photo represents recovered sample between 54-55 ft interval.	565 560 555

Geosynt consult engineers scientists im		Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	sh Pond 3	BC Boring No. Page:	ORING LOG AP3-B-4 4 of 4	
Drilling End Date: 02/ Drilling Company: Cas Drilling Method: Son Drilling Equipment: T25 Driller Name: Ve		-		Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	77 6 Core Barrel (CB 41.3 608.39 1942920.34, 15	3), Shelby Tube (50709.19	(ST)
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION	Sample Type Recovery (ft)	OLLECT oporte	SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
			thinly bedded, fresh			Driller reported rod dropped, lost circulation. Fracture at 61.7 ft (55 mm) (obtained from Geophysical Log)	- 545 545 540

		ultants I innovators	ts Boulevar	: d			HGWC-125 PAGE 1 OF 2		
CLIE	NT SOL	uthern Company Serv	ices		PROJECT NAME _Plant Hammond Well Installation				
		JMBER _ GW6581B			PROJECT LOCATION _Plant Hammond				
		TED 5/4/20	C	OMPLETED 5/4/20	NORTHING 1550821.41 ft	EASTING	1 942962.87 ft		
		ascade Drilling			GROUND ELEVATION 605.70 ft		DIAMETER _ 6 in		
		ETHOD Sonic			TOP OF CASING ELEVATION 608.89 f				
		METHOD _4" core 6"	override		GEOPHYSICAL CONTRACTOR				
RIG 1	YPE _T	erra Sonic Compact (Crawler		LOGGED BY N.Tilahun	CHECKE	D BY J. Ivanowski		
DEPTH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG		RIAL DESCRIPTION	ſ			
0 5 - 0 10 - 15 - 2 10 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -				sand, few fine to coarse angula 20 ft: Trace black mottles.	r to medium plasticity, trace fine to medium ar gravel, few silt, soft to firm, moist.	595.7	- Schedule 40 PVC 2" Aquaguard Sodium Bentonite Grout		

SCS MONITORING WELLS PLANT HAMMOND MW34D TO MW41, MAY 2020.GPJ ACP GINT LIBRARY CH.GLB 7/8/20

Log u	odated	with re	evised	surve	ey certified 5/19/2020.	
E) RM	Atla	00 Win anta, G	A 303	Rd Ste 1500W 39 3-486-2700	WELL NUMBER HGWC-121A PAGE 1 OF 1
CLIEN	T Sou	thern C	Compa	iny Sei	rvices, Inc.	PROJECT NAME Plant Hammond
					COMPLETED _7/17/17	
					hern Comparny Services, Inc m Auger 2"	$\overline{\nabla}$ AT TIME OF DRILLING 13.20 ft
					CHECKED BY	AT END OF DRILLING
	Щ	%				
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY	U.S.C.S.	GRAPHIC LOG	MAT	ERIAL DESCRIPTION WELL DIAGRAM Top of casing elevation: 584.69 Elev: 582.31 Casing Type: 2" PVC
					(CL-ML) Silty CLAY: reddish wit medium stiff, low plasticity, dry	h yellow mottling, some large angular gravel,
	∦ ss	70	CL-		medium sun, iow plasticity, dry	
	\wedge	10	ML			
5	/ }		<u> </u>		5.0	577.31
	\/				plasticity, dry	mottling, some gravel, medium dense, low
	∦ ss	63	CL			
	()					
_ 10	$\left(\right)$		+		10.0(CL) CLAY: gray, some coarse	sand, medium dense, moderate plasticity, moist
	$\backslash / $				Ā	
) ss	80	CL		Σ	
15	/ \					
					(CL) SAA	
	∦ ss	78	CL			
	\wedge	10				
20	/					
	$\backslash /$				(CL) SAA, wet	✓ bentonite
	∦ ss	53	CL			
	\mathbb{N}					· · · · · · · · · · · · · · · · · · ·
25	\rightarrow		+		25.0(CL) CLAY, gray/brown, some g	<u>557.31</u>
	$\backslash $					Top screen elevation: 556.71
	∬ ss	32	CL			
30	/ \				30.0	552.31 20/30 sand
					No recovery	UPACK
	∦ ss	0				screen
-	\mathbb{N}^{33}					
35	/ \				35.0	547.31 Bottom screen 546.71 elevation: 546.71
			1	1	Bottom	of borehole at 35.6 feet. Easting and Northing in NAD 1983.
						Elevation in NAVD 88.

TRANSECT D-D' LOGS

O F ВО O G R N G U SHEET ___OF __ Soil Systems, Inc. CONTRACTED WITH Plant Hammond BORING No. P. L P-6 PROJECT NAME MMEATYARd M.D. KERSON E. W. Hums JOB NO. 753 DATE 2-8-77 ELEV

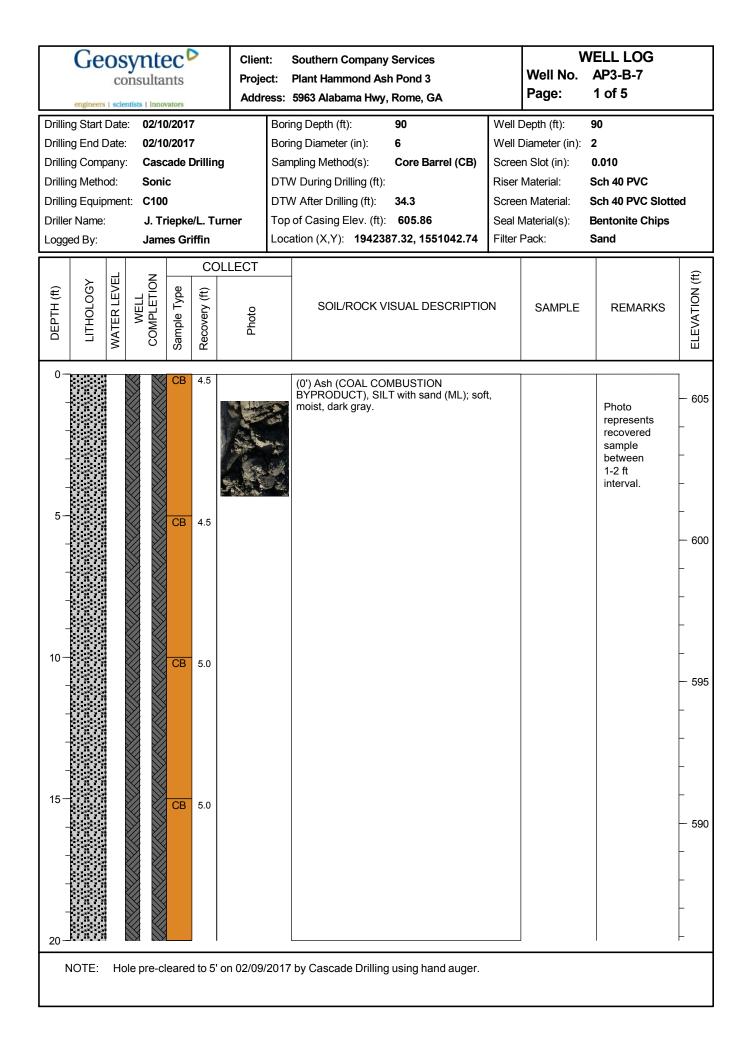
DESCRIPTION	DEPTH		SA	MPLES		NOTES	
	FEET	NO.	TYPE	BLOWS/6'	RECOV	NOTES	
					1		
		1					1
Sr. weath shale	2.5	17	SP	41414			
~							
BR. 5g c)	50	2	50	9/4/4	1		
	· ` ` `			11-11-1	· · · · · · · · · · · · · · · · · · ·		
BR, side Je	75	2	30	6/3/10			
				01.0//0			
Be sas, Q cl	100	17-	<0	2/16/16		-	11
	1/0.0	7		04/10/10	·		
and sa.	125		100	1/11/15			
an a sa.	yas.	1ð	12.7	5/11/13			
~			en				
En si cl	1/5.0	6	SM	3/3/4		1977 (1978) (1979) (197	
	-		20	11 - 17			L
and J	¥1.3	17.	SP	11051.5		5= 5.55 9 Faz JV9	3,
			200				ŀ
SR. BR. weath shake	20.0	8	SF	3/31.4.		1. 1. 1. 1. 1. 1	
	· ·					- 1- 1- 1- 1- 1	
R. weith shall	825	9	50	100/37			
· •							
	St5	10	53	100+=1			
	5,55	DI	37	100+=1	No	Rec.	
	•						
		·					÷

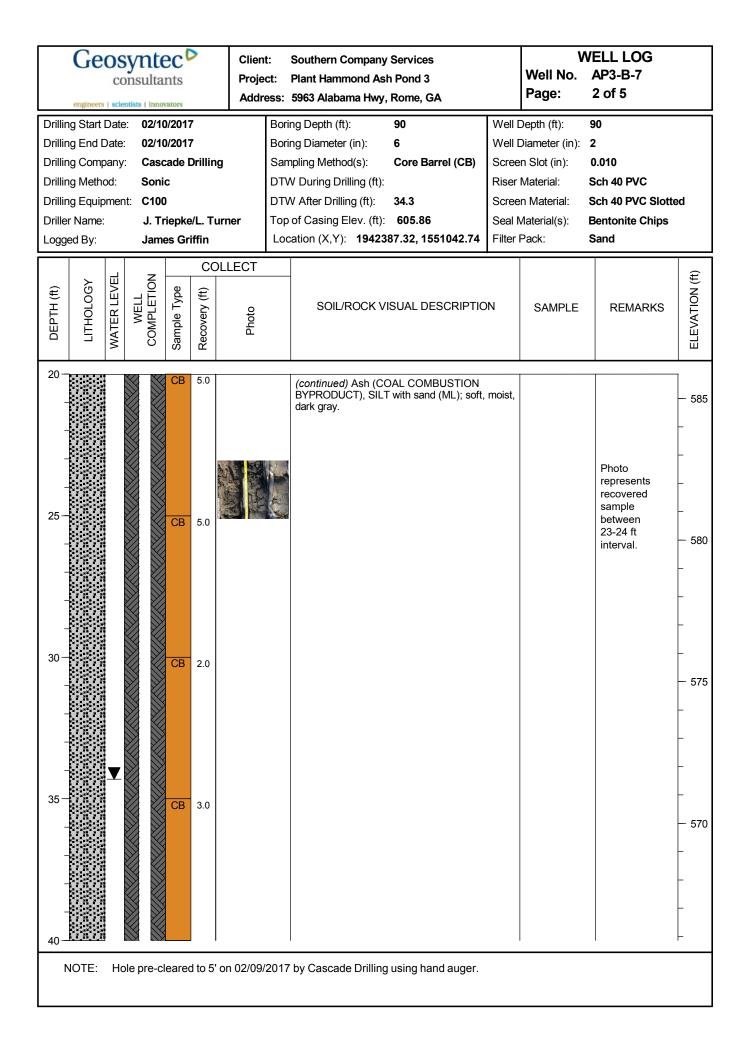
	1						5.5
				#			3
							ر جح
· · · · · · · · · · · · · · · · · · ·							١.
	+						
	╋╼╌┈┈┤						
							٠.
•						· · · · · · · · · · · · · · · · · · ·	
							ſ,
	 					GWATOB-/5.0'	
						GW24hrs	· .,
]	REFUSAL-22.2	
					P	GWATOB-15.0 GW24hrs REFUSAL-22.2 BORING-P-6 FERMINATED-22.2	
	L				·	TERMINATED- 22.2	•
						· · · · · · · · · · · · · · · · · · ·	
			·			and the state of the state	
	Г Г					er an	-11

5									
and the second s		LOGO	F		B	O R		·	
	•	l Systems, Inc.	1					SHEET OF	L
		RACTED WITH PLANT HAM	-		17	··-··		BORING No. P.S	
	PROJ	EET NAME MMEATYARN N					8 No.	<u>-153</u> DATE <u>2-8-77</u>	7
	ELEV.	DESCRIPTION		NO	S A TYPE	AMPLES	"RECO	NOTES	
		Yell BR, sad @ gavel			1	7/10/13		· · · · · · · · · · · · · · · · · · ·	
		SR. shale				112/15			
		BR. 3g cl Q gravel	15.0	3_	SP	18/34/30	3	-	
		BR Sa C			1	10/10/11	1		
		BR, SIC)	22.5	6	SP	9/10/12			-
		BR 5, 0 Q 39.		1		10/11/11	• •		
		GR. Tan J. cl	· · ·	1	1	6/2/2	1		
		Tan si cl	30.0	B	3P	41619		PVC Sof	
		Jan Ji cl	325	9	5P	3/4/5			
		BR. si el	1.0		1	2/3/7	· · · · · · · · · · · · · · · · · · ·	Mpsce 200 = 21.0 Lource 40.5 = 41.5	· []
		5R. weath shak	375	11	5P	51.5/1			2100
		Syme	40.0	12	sp	4/3/12	· · · · · · · · ·		
		······	15355	120	B				
ŀ		· · · · · · · · · · · · · · · · · · ·	40,5	13	2b	100+/1	Nor	CC	+
•									-
F		· · · · · · · · · · · · · · · · · · ·				т артификторие на баларија на сталот и с 14. артификтори и Росси на селотор — Бала, 14. арти		· · · · · · · · · · · · · · · · · · ·	
F		/					••• •••••• •••		
F								8	
· F								GWATOB-55.0	
								GW24hrs, REFUSAL-, 40, 5	
								BORING- 3-5 TERMINATED- 40.5	
-								يَجْهِ	
E								2	

GPC CIVIL DIVISION MATERIALS SECTION

بي ب


TEST BORING RECORD


PROJECT <u>PLANT</u> <u>HAMMOND</u> LOCATION <u>ROME</u> BORING NO. <u>P-18</u> ELEVATION _____ DATE <u>8-2-77</u>

	DE	PTH	DESCRIPTION	SA	MPLE	PEN	TRΔT		1	CORE
	-	1 TO	DESCRIPTION		DEPTH				N	REC.
	0	36	AUGAR - NO SAMPLE	1		<u> </u>				
	236	21	ANGAR - NO SAMPLE BROWN CLAY With SMALL TO MED	\uparrow	75	3	11	14		
~			GRAVEL - SAME	7	276					
			Them to	1			1			
- ·	21	21.	RADULAS A DAL STA GUY - TERRATE		30'			16		
		50	BROWN-GRAY SALLY - TERRALE BROWN-GRAY SILTY CLAY SOME SMALL GRAVEL	1 1	326			/2		
			SMALL GRAVEL - SAME		35']]		
	20	₹£ E	BROWN SILTY CLAY SMALL TO MED		376	1		14		
	38'	412	BROWN SILTS CLAY SMALL TO MED GRAVEL MED to CARSE SAND GRAVEL MED to CARSE SAND GYLL & LINS FARE RESID		40'			8		
	42	453	BROWN SILTY CLAY-WITH ROCK FRA	8	45	20	35	13		ĺ
بر ایک درا	450	"	REFUSAL							
درآ			BORING COMPLETE 8-3-77							
				-+						- <u>-</u>
ŀ										
ŀ										
			FROM TO FROM TO							
	SS		FROM TO FROM TO REMARK	S					i k-e-e Densopera	
			40 45'3 TRI-CONE SEREE	N	SET	- Ai	r 4	5.0	3 47	
		2CAS	SING $0 \frac{40}{40}$ CORE $1\frac{4}{4}$ X		,	5				
	ΟΤΙ	HER_		5	50	LR 55	۶N			
	GW	ATO	B GW 24 HRS. 25 -10" DRILLED RK			GED	4	IN	· · · · ·	
CO:C	a da Calificitati ingenerati anti-	all'inclusion and a size			E	3Y -	-/*			<u> </u>

2x-7/76-2923-C

					P		
SSI	·	0		B(DRIP	4G	SHEETOF
•	tems, Inc.	•		· ·			
PROJĘC	T Plant Hammond	•	S	s <u>-</u>	-753	5	BORING No. Z-5
DRILL C	REW MEMBERS M. Meaturd,	M.D	icke	302			DATE12-20-76
ELEV.	DESCRIPTION	DEPTH IN FEET			AMPLES		NOTES
		FEEI	NO.	TYPE	BLOWS/6	RECO	/
10,-	- 31 f-n 3- (2) gav, = c)	1.5		5P	6/10/6		
Be	, cl s,	3.0	Z	SP.	3/4/6	· · · ·	
Be	F78, wol. Cl 51	4.5	3	SP	5/6/7		
5.	me	0.0	4	3P	2/4/4		
		7,5	3	57	2/3/4	1 132	
	and the second of the Contraction				4317		
		9:0	6	SP	11.5		
	ane the states of the states o	10.5	- 7	SP.	1/1/2		
JL A 12.0-125	KIP + BR Cl J Q Shike Fries	12.0	8	sp	91514	· · · · · ·	
sk B 13.0-13.5		13.5	9	SP	2/4/33	ATE	SAMPLIS ALD-BSOBS
Dk	, Fr. shike trays	150	10	50	30/2/10		
		- 16.5		5P	5/1/1		
1.07		•					
		18.0	12	52	VVIS	· · · ·	
2		125	13	<u>5 P</u>	101/1"	NO RA	
				*			
	1949) e a construction de la c						
			• • •	in (·····	
States	1999	<u> </u>	· ·		4	,	
		· · · ·	: .	·	· · ·		
	and the second	<u> </u>		· :		· ·	
		·					GWATOB- 2.0
							GW24hrs 0,0
		····		· ·	×		REFUSAL-18.
							TERMINATED 18/1
	YG						
		t i r		Ň	جــــــــــــــــــــــــــــــــــــ	- ب ېن ون 	

Geosyntec Consultants	Client: Project: Address:	Southern Company Services Plant Hammond Ash Pond 3 5963 Alabama Hwy, Rome, GA		Well No.	ELL LOG AP3-B-7 3 of 5	
Drilling Start Date:02/10/2017Drilling End Date:02/10/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurLogged By:James Griffin	Bori San DT DT ner Top	ng Diameter (in): 6 npling Method(s): Core Barrel (CB) V During Drilling (ft): V After Drilling (ft): 34.3 of Casing Elev. (ft): 605.86	Well E Scree Riser I Scree	Diameter (in): n Slot (in): Material: n Material:	90 2 0.010 Sch 40 PVC Sch 40 PVC Slott Bentonite Chips Sand	ed
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Recovery (ft) O	LECT Photo	SOIL/ROCK VISUAL DESCRIPTION	N	SAMPLE	REMARKS	ELEVATION (ft)
40 40 		(40') Fat CLAY with sand (CH); medium plasticity, medium stiff, moist, pale yellowish-brown, RESIDUUM. (48') Lean CLAY with gravel (CL); trace fine-coarse gravel, medium plasticity, soft, n dark reddish-brown, RESIDUUM.	noist,	Soil Grab Sample AP3-B-7 (44-45)	Photo represents recovered sample between 41-42 ft interval.	- 565 560
55 - CB 4.0 60		(55') Lean CLAY with gravel (CL); trace fine gravel, medium plasticity, very soft, saturated, light brown, HIGHLY WEATHERED LIMESTONE.		Soil Grab Sample AP3-B-7 (52-53) Soil Grab Sample AP3-B-7(56-57) Photo represents recovered sample between 5758 ft interval.	- - - 550 - -

Ceosyntec Consultants	Client:Southern Company ServicesProject:Plant Hammond Ash Pond 3Address:5963 Alabama Hwy, Rome, GA	WELL LOG Well No. AP3-B-7 Page: 4 of 5
Drilling Start Date:02/10/2017Drilling End Date:02/10/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurnLogged By:James Griffin	Boring Diameter (in): 6 Sampling Method(s): Core Barrel (CB) DTW During Drilling (ft): F DTW After Drilling (ft): 34.3 er Top of Casing Elev. (ft): 605.86	Well Depth (ft):90Well Diameter (in):2Screen Slot (in):0.010Riser Material:Sch 40 PVCScreen Material:Sch 40 PVC SlottedSeal Material(s):Bentonite ChipsFilter Pack:Sand
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Recovery (ft)	ECT g SOIL/ROCK VISUAL DESCRIPTION	SAMPLE REMARKS (1) NOLLYA III
60 - - - - - - - - - - - - -	(60') No Recovery. (65') Lean CLAY with gravel (CL); trace fine-coarse gravel, medium plasticity, very soft, saturated, dark purplish-brown, HIGH WEATHERED LIMESTONE. (70') SEDIMENTARY ROCK (LIMESTONE); moderately bedded, fresh, hard, dark bluish-smoist. (70') SEDIMENTARY ROCK (LIMESTONE); moderately bedded, fresh, hard, dark bluish-smoist.	Soil Grab recovered Sample sample _ AP3-B-7(68-69) between 67-68.5 ft interval.
NOTE: Hole pre-cleared to 5' or	02/09/2017 by Cascade Drilling using hand auger.	between 76-77 ft interval.

Ceosyntec Consultants		Southern Company Services Plant Hammond Ash Pond 3 : 5963 Alabama Hwy, Rome, GA		Well No. Page:	VELL LOG AP3-B-7 5 of 5	
Drilling Start Date:02/10/2017Drilling End Date:02/10/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:J. Triepke/L. TurneLogged By:James Griffin	Bo Sa D1 D1 er To	pring Depth (ft):90pring Diameter (in):6pring Diameter (in):Core Barrel (CB)TW During Drilling (ft):34.3TW After Drilling (ft):34.3po of Casing Elev. (ft):605.86po action (X,Y):1942387.32, 1551042.74	Well I Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	90 2 0.010 Sch 40 PVC Sch 40 PVC Slotted Bentonite Chips Sand	1
DEPTH (ft) LITHOLOGY WATER LEVEL WATER LEVEL COMPLETION Sample Type Recovery (ft)	ECT Dopoto B	SOIL/ROCK VISUAL DESCRIPTIO	N	SAMPLE	REMARKS	ELEVATION (ft)
		(continued) SEDIMENTARY ROCK (LIMESTONE); moderately bedded, fresh hard, dark bluish-gray, moist. (90') Boring terminated.	,		6-inch diameter boring installed at 80 ft. Horizontal K = 3.70E-05 cm/ sec (from single Slug Testing screen interval between 85-90 ft; not used in modeling).	- 525 - - - - 520 - - - 515 - - - -
NOTE: Hole pre-cleared to 5' on	02/09/201	17 by Cascade Drilling using hand auger.				

Ceosyntec consultants	Client: Project: Address:	Southern Company Plant Hammond As 5963 Alabama Hwy	sh Pond 3	BC Boring No. Page:	ORING LOG AP3-B-10 1 of 5	
Drilling Start Date:02/14/2017Drilling End Date:02/16/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:Jeremy TriepkLogged By:Christine Hug	-		Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Easting, Northing (X, Y):	100 6 Core Barrel (CE 35 39.8 608.69 1942345.89, 1	-	
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Recovery (ft)	of of of the second sec	SOIL/ROCK V	VISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
0 CB 5.0 CB 5.0 CB 5.0 CB 10.0 CB 10.0		grained sand, some gray. (4') Between 4 ft an (5') Some brown sa trace of fine gravel. (5.5') Pale and dark (10') Layers/zones of	ty SAND (SM); mostly fine e silt, loose, moist, dark d 5 ft, Sandy SILT. ndy SILT, low plasticity and		Photo represents recovered sample between 1-3 ft interval.	- 605 600 600
		(15.5') Band of pale (18') Zone of sandy	gray SAND with SILT. SILT.		Photo represents recovered sample between 16-17.5 ft interval.	- - - 590 -
NOTE: Borehole set outside	overhead powe	er line corridor.				

Drilling Start Date: 02/14/2017 Boring Depth (ft): 100 Drilling Company: Caseade Drilling Sampling Methods): Core Barrol (CB) Drilling Company: Caseade Drilling Sampling Methods): Core Barrol (CB) Drilling Company: Sampling Methods): Sone E Core Barrol (CB) Drilling Equipment: C100 Diff Marro: Sasa Logged By: Christine Hug SolL/ROCK VISUAL DESCRIPTION SAMPLE REMARKS 20 SolL/ROCK VISUAL DESCRIPTION SAMPLE REMARKS 21 SolL/ROCK VISUAL DESCRIPTION SAMPLE SolL/ROCK VISUAL DESCRIPTION 25	Geosyntec consultants	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	h Pond 3		ORING LOG AP3-B-10 2 of 5	
U DOULT Soll/ROCK VISUAL DESCRIPTION SAMPLE REMARKS E 20 00/L1 00/L1 </th <th>Drilling End Date:02/16/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:Jeremy Triepke</th> <th></th> <th></th> <th>Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft):</th> <th>6 Core Barrel (Cl 35 39.8 608.69</th> <th></th> <th></th>	Drilling End Date:02/16/2017Drilling Company:Cascade DrillingDrilling Method:SonicDrilling Equipment:C100Driller Name:Jeremy Triepke			Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft):	6 Core Barrel (Cl 35 39.8 608.69		
25 -			SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
40 570			BYPRODÚCT), Šilt grained sand, some gray. (22') Band of browr SAND/sandy CLAY (25') Silty SAND. (25') Silty SAND. (25') Silty SAND. (25') Silty SAND. (25') Silty SAND. (25') Silty SAND.	y SAND (SM); mostly fine e silt, loose, moist, dark n and orange clayey f, trace of gravel. f, trace of gravel. ery. Believed to be Ash ION BYPRODUCT).		water added by driller. Photo represents recovered sample between 25-26 ft	- - - 580 - -
NOTE: Borehole set outside overhead power line corridor.	40					represents recovered sample between 35.5-36.5 ft	- - - 570 -

45 45 45 45 45 50 50 50 50 50 50 50 50 50 5			CO		nts	>	1 '	Southern Company Plant Hammond As 5963 Alabama Hwy	sh Pond 3	BC Boring No. Page:	RING LOG AP3-B-10 3 of 5	
(i) Asymptotic processing of the procesing of the processing of the processing of the proces	Drillin Drillin Drillin Drillin Drille	ig End I ig Comp ig Metho ig Equip r Name:	Date: bany: od: omen	02/16 Case Sonie at: C100 Jere	6/2017 cade I c my T	7 Drillin riepke	-		Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft):	6 Core Barrel (CE 35 39.8 608.69	-	
40 Lean CLAY (CL); trace fine gravel, few fine recovered sample between stand, trace sit, mosty day, medium plasticity, soft, wet, orange, with minor pale red staining/mottling, RESIDUUM. Photo represents recovered sample between 40-41 ft interval. 45 (43) From 43 ft with pale gray, horizontal lamination and mottling. - 560 45 (45) From 45 ft increasing silt content, orange, dark orange and gray motiled. Trace of weakly comented, dark orange sandy pebbles. - 560 50 (50) Becoming pale brown with dark orange. With some sand. - 560 50 (50) Becoming pale brown with dark orange. With some sand. - 560 50 (50) Becoming pale brown with dark orange. With some sand. - 560 50 (50) Becoming pale brown with dark orange. With some sand. - 560 50 (50) Becoming pale brown with dark orange. With some sand. - 560 50 (50) Becoming pale brown with dark orange. With some sand. - 560 50 (51) With brown to dark brown mottling, some fine-coarse gravel, little fine-medium sand, mostly dark gray, Immestone, with some white calcarcous versions, up to 41 diameter, HIGHLY WEATHERED LIMESTONE. Photo represents recovered sample between s55.65.61	DEPTH (ft)	ЛЛОГОСЛ	WATER LEVEL	BORING COMPLETION	Sample Type			SOIL/ROCK V	'ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
(57.5') With angular fragments of limestone up to 5 inches in diameter. Limestone is dark gray,								 sand, trace silt, mos soft, wet, orange, w staining/mottling, RI (43') From 43 ft with lamination and mott (45') From 45 ft incr dark orange and gracemented, dark orange cemented, dark oran (50') Becoming pale With some sand. (53') With brown to fine grained sand. (54') Gravelly lean C fine-coarse gravel, I mostly clay, mediur wet, dark gray, darl dark gray, limeston calcareous veins, u WEATHERED LIM (57.5') With angular to 5 inches in diame 	 thy clay, medium plasticity, the minor pale red ESIDUUM. a pale gray, horizontal ling. breasing silt content, orange, ny mottled. Trace of weakly nge sandy pebbles. brown with dark orange. brown with dark orange. cLAY (CL) with sand; some title fine-medium sand, n plasticity, medium stiff, k brown. Gravel is angular, e, with some white pito 4' diameter, HIGHLY ESTONE. fragments of limestone up ter. Limestone is dark gray, 		represents recovered sample between 40-41 ft interval. Photo represents recovered sample between	- 565 - 560 - 555 - 555 550 550

65 gray, increasing gravel content with depth. Gravel is dark gray limestone. with cobbles of limestone up to 4 inches in diameter, HIGHLY WEATHERED LIMESTONE. Photo represents recovered sample between 66-68 ft interval. 70 66') Dry. (67') Wet. (68') Increasing size of limestone fragments, intact pieces of core up to 3 inches length. Driller reported harder drilling, adding more water. Fines in cuttings possibly washed away. Driller reported harder drilling, adding more water. Fines in cuttings possibly washed away. 75 (75') No Recovery. (75') No Recovery. From 76' to end of una 80' driller reported very soft drilling, rods can be pushed through			co		nts	>	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	sh Pond 3		ORING LOG AP3-B-10 4 of 5	
(i) (Drillin Drillin Drillin Drillin Drille	ng End I ng Comp ng Metho ng Equip r Name:	Date Dany od: Dmer	: 02/16 : Caso Sonie ht: C100 Jere	6/2017 cade I c my T	7 Drillin riepke	-		Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft):	6 Core Barrel (CI 35 39.8 608.69	-	
65 66 (61') No limestone cobbles, trace of fine gravel only. 545 65 (63') Clayey GRAVEL (GC); some fine-coarse grained gravel, some clay, wet, dark brown, and grav, increasing gravel content with depth. 545 66 (66') Dry. (66') Dry. (66') Dry. (66') Dry. (66') Increasing size of limestone fragments, intact pieces of core up to 3 inches length. Driller reported harder drilling, adding more with gravel from 72.5'. Fines possibly washed away. Driller reported harder drilling, or 70' Thi interval. 70 70 70' SEDIMENTARY ROCK (LIMESTONE); think) bedded, fresh, hard, dark gray, moist, with calcite veins. Drilled as gravel size fragments between 70 and 72.5'. Fines possibly washed away. Driller reported harder drilling, or 70' Thi interval. 75 75 75' No Recovery. From 76' to end of run a 80' driller reported somple between 70' Thi threval.	DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	BORING COMPLETION	Sample Type			SOIL/ROCK V	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
			Bc		СВ	5.0	Overhead power	 (63') Clayey GRAVE grained gravel, som gray, increasing gra Gravel is dark gray I limestone up to 4 in WEATHERED LIME (66') Dry. (67') Wet. (68') Increasing size intact pieces of core (70') SEDIMENTAR thinly bedded, fresh calcite veins. Drilled between 70 and 72. with gravel from 72. away. (75') No Recovery. 	EL (GC); some fine-coarse e clay, wet, dark brown, and vel content with depth. imestone. With cobbles of ches in diameter, HIGHLY ESTONE. e of limestone fragments, e up to 3 inches length. EY ROCK (LIMESTONE); hard, dark gray, moist, with as gravel sized fragments 5', and cobbles of limestone		represents recovered sample between 66-68 ft interval. Driller reported harder drilling, adding more water. Fines in cuttings possibly washed away Photo represents recovered sample between 70-71 ft interval. From 76' to end of run at 80' driller reported very soft drilling, rods can be pushed through material with minimal pressure. Rods do not sink under own	- 545

		CC	onsulta ntists innov	nts	>	Project:	Southern Company Plant Hammond As 5963 Alabama Hwy	h Pond 3		ORING LOG AP3-B-10 5 of 5	
Drilling Drilling Drilling Drilling Driller	ng Start Date:02/14/2017Boring Depth (ft):100ng End Date:02/16/2017Boring Diameter (in):6ng Company:Cascade DrillingSampling Method(s):Core Barrel (CB)ng Method:SonicDTW During Drilling (ft):35ng Equipment:C100DTW After Drilling (ft):39.8er Name:Jeremy TriepkeGround Surface Elev. (ft):608.69ged By:COLLECTCOLLECTT										
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	BORING COMPLETION	Sample Type	Recovery (ft) O	OLLECT oport	SOIL/ROCK V	ISUAL DESCRIPTION	SAMPLE	REMARKS	ELEVATION (ft)
80				СВ	5.0		thinly bedded, mode gray, wet, drilled as inches diameter. Dri (83') From 83.5' dry (85') No Recovery. (85') No Recovery.	Y ROCK (LIMESTONE); ly weathered, hard, dark cite veins. Drilled as cobbles		Between 80 ft and 82 ft, driller reported very soft drilling. From 80 ft no water used for drilling to attempt to recover soft material. From 82' to 85': Hard drilling, slow progress. Loss of circulation between 85 and 88'. Between 85 ft and 87 ft soft drilling with no resistance during drilling. Moderately hard and slow drilling from 88' to 100', rig occasionally chatters. 6" casing installed to 88'. No loss of circulation or soft zones encountered between 88' and 100'. Photo	- - - - - - - - - - - - - - - - - - -
100				СВ	3.0			Y ROCK (LIMESTONE); , hard, dark gray, moist. ated.		represents recovered sample between 92-93 ft interval.	- 510
N	OTE:	Bo	orehole s	et ou	tside o	overhead powe	er line corridor.				

APPENDIX C

Geophysical Investigation Report

Final Technical Report

Microgravity Survey at Plant Hammond Ash Pond #3 Floyd County, Georgia

for

Geosyntec Consultants, Inc. Kennesaw, Georgia

March 24, 2017

SGS Project No.: 2017344

Geosyntec Project No.: GR6242

CERTIFICATION

I hereby certify that this document has been prepared in accordance with generally accepted geophysical exploration and interpretation practices.

Authored by:

Ronald Kaufmann President Licensed Professional Geophysicist - California #1071 Licensed Professional Geologist - Tennessee #3675

TABLE OF CONTENTS

Certification	ii
List of Figures	iv
Background	1
Technical Approach	2
Survey Area	
Microgravity Survey Data Acquisition	
Data Processing	
Interpretation Quality Control and Calibration Limitations	6
Results	
Cross-Sectional Models Conclusions	
References	
Appendix A	
Instrument Calibration	

LIST OF FIGURES

- Figure 1. Microgravity station locations
- Figure 2. Microgravity contour map (Bouguer Values)
- Figure 3. Microgravity contour map (Residual Values)
- Figure 4. Line 5 microgravity model
- Figure 5. Lines 2, 3A, and 3 microgravity model

BACKGROUND

Geosyntec Consultants, Inc. (Geosyntec) is investigating subsurface conditions within Ash Pond #3 (AP3) at Georgia Power Plant Hammond in Floyd County, Georgia. The dry pond is approximately 23 acres and is currently being filled and graded with additional ash before being capped. The ash is estimated to be up to 41 feet thick above clay and limestone rock.

Geosyntec retained Spotlight Geophysical Services (SGS) to carry out a microgravity survey within AP3. Microgravity is a non-invasive method that can map the magnitude and lateral extent of subsurface anomalies such as karst features (dissolution-enlarged joints, cavities, and weathered limestone) due to the inherent low-density contrast between these features and the surrounding material. Additionally, microgravity can be used to identify low-density features within the soil and ash due to erosion.

Geosyntec issued a work order for the microgravity survey under the terms of the Master Subcontractor Services Agreement dated January 16, 2015. Fieldwork was performed between February 7th and 11th, 2017.

TECHNICAL APPROACH

SURVEY AREA

Microgravity data were acquired along nine (9) survey lines within AP3, labeled 1 to 8 and 3A (Figure 1). The survey lines are oriented in a north-south direction and spaced approximately 100 feet apart within accessible portions of AP3. Data could not be acquired in areas restricted by Southern Company Services safety personnel such as the equipment staging area. The stations were marked with a 60d nail and a stake whisker at a spacing of 20 feet along the survey lines.

The station locations were surveyed with a Trimble ProXT differential GPS. The geographic locations are referenced to Georgia State Plane (west) coordinates using the NAD83 datum.

MICROGRAVITY SURVEY

A microgravity survey measures variations in the Earth's gravitational field caused by changes in subsurface density. A microgravity survey consists of making sensitive gravity measurements at discrete points along a profile line or within a grid (ASTM, 2005). Microgravity data can be used to map karst-related features, variations in depth to bedrock, faults, voids, soft zones, and man-made features such as mines and tunnels. *Note: In this report the terms "Microgravity" and "Gravity" are synonymous.*

Data Acquisition

Microgravity data were acquired at a total of 323 locations, including one base station (Base0). Precise relative elevations of the microgravity stations were obtained with a Topcon DL-102 digital level. The elevations are tied to the gravity base station Base0 with an elevation of 600.935 feet, provided by on-site land surveyors using an RTK GPS. The elevations were measured with a loop closure precision within 0.01 feet per linear-mile, which is within the necessary precision for the microgravity data processing.

Microgravity data were obtained with a Scintrex CG-5 gravimeter (S/N 40800077), using a 30-second averaging window and automatic corrections for tides and meter leveling. The data were recorded to a field notebook and digitally to the gravimeter memory. The data were downloaded to a computer after each day of data acquisition.

Data Processing

The gravity data were reduced to Bouguer values using standard reduction formulas in Microsoft EXCEL (Long and Kaufmann, 2013). Note that since this is a local microgravity survey, the data were not tied to an absolute gravity datum. The Bouguer values were calculated with the corrections applied as shown in Equation 1.

Eqn. (1) $g_{Boug} = g_o - g_d - g_t - g_l + g_{fa} - g_{slab} + g_{tc}$ Where: g_o = observed gravity values; g_d = instrument drift; g_t = tide correction; g_l = latitude correction; g_{fa} = free air correction; g_{slab} = Bouguer slab correction; and g_{tc} = terrain correction.

INSTRUMENT DRIFT

All relative gravity meters have an inherent drift that must be corrected for by repeated occupations at base stations during the survey. Base station "Base0" was established on a concrete footing for a large pipe on the west side of the pond (Figure 1). Data were acquired at Base0 at the start and end of each day of data acquisition and at approximately 3-hour intervals during data acquisition. At least three consistent measurements with a standard deviation within $\pm 5 \mu$ Gals were acquired at each base station occupation. The drift during a full day of surveying was less than 10 μ Gals. The drift was removed from the raw data by assuming a linear drift between base station occupations.

TIDAL CORRECTION

The gravitational effects of the sun and moon can be as much as 300 μ Gals over the course of a day (Long and Kaufmann, 2013). The Scintrex CG-5 automatically removes the tidal effects using the Longman formula (Seigel, 1995; Longman, 1959). Any residual tidal effects (< 10 μ Gals) due to tidal loading and earth deformation are removed during the drift correction.

LATITUDE CORRECTION

There is an increase in gravity with increasing latitude. Standard equations for the latitude correction are presented in Long and Kaufmann (2013) and Telford et al. (1990). The calculation of the gravitational gradient due to latitude is shown in Equation 2.

Eqn. (2): $g_l = \frac{\Delta g}{\Delta s} = 0.811 \sin 2\varphi \, mGal/km$ Where: $\frac{\Delta g}{\Delta s}$ is the gravity change (mGal) in the north-south distance (km) and φ is the latitude in degrees.

FREE AIR CORRECTION

Since gravity varies inversely with the square of the distance, it is necessary to apply a *free air correction* that accounts for changes in gravity due to elevation (Long and Kaufmann, 2013; Telford et al., 1990). The free air correction is 94.06 μ Gals/foot of elevation. Precise elevations were measured with a Topcon DL-102 digital level as described above and used to calculate the free air correction. In order to account for variations in the gravity meter height above the ground surface, a free air correction (94.06 μ Gals/foot) for the gravity meter height was also applied to the data. The meter height was measured at each station using a standard tape measure with a precision of 0.01 feet.

BOUGUER SLAB CORRECTION

The *Bouguer Slab Correction* accounts for the attraction of the material between the measurement station and a constant datum (Long and Kaufmann, 2013; Telford et al., 1990). The calculation of the Bouguer slab correction is shown in Equation 3.

Eqn. (3): $g_{slab} = \frac{\Delta g}{\Delta r} = 0.01278 \rho \, mGal/ft$

Where: $\frac{\Delta g}{\Delta r}$ is the gravity change (mGals) per foot of elevation change and ρ is the density in g/cc.

In this survey, a Bouguer slab density of 1.6 g/cc was used to approximate the density of moist coal ash, based on density measurements at similar Southern Company sites (G.B. Dyer, personal communication).

BOUGUER GRAVITY

Bouguer gravity values (Equation 1) are directly related to subsurface density variations. The median value was removed from the dataset to show relative high and low gravity values across the site.

RESIDUAL GRAVITY

In order to remove the gravitational effects of ash thickness variations, residual gravity values were calculated in the following process:

- Ash thickness was calculated below each gravity station by subtracting the original pond bottom elevation (Georgia Power, 1971) from the current surface elevation.
- The change in gravity due to the ash was calculated by using the overburden thickness approximation (Telford et al., 1990). A density contrast of 0.49 g/cc between the ash and surrounding clay and limestone was used since it produced gravity residual values with the least correlation to the ash thickness.
- The change in gravity due to the ash was added to the Bouguer gravity values and the resulting values are referred to as the *Residual Gravity*.

Interpretation

The microgravity data were assessed for low-gravity zones that may be due to subsurface mass deficits such as karst-related features within the limestone and density variations within the soil and ash. The gravity data were modeled with standard formulas for gravity interpretation (Long and Kaufmann, 2013; Telford et al., 1990) using IX2D-GM software (Interpex, Ltd.). The modeling included iterative forward and inverse modeling by fitting simplified cross-sectional subsurface density variations to the observed data in the IX2D-GM software. The pre-ash pond bottom (Georgia Power, 1971) and top of weathered rock data provided by Geosyntec were used to constrain the microgravity models.

Quality Control and Calibration

The Scintrex gravimeter and Topcon level were set-up and operated in accordance with the manufacturer's instructions and ASTM standards (ASTM, 2005). The Topcon DL-102 level was calibrated prior to the fieldwork (Appendix A). The level calibration of the gravimeter was checked daily (Appendix A).

The data quality was monitored by re-acquiring data at stations throughout the survey in a pseudo-random fashion and checking the repeatability of the measurements. Data were re-acquired at a total of 54 stations (17% of total) and have an average deviation of $\pm 3 \mu$ Gals, which indicates a low level of ambient noise for the site.

Limitations

Microgravity data will respond to variations in subsurface density and can be used to map the lateral locations of anomalous areas. However, microgravity data alone cannot determine the vertical distribution of the anomalous zones or the absolute depth to stratigraphic layers. Borings must be used to positively identify the causes of the microgravity variations and the depth of the anomalous features.

The microgravity data are presented in a plan-view contour map with interpolated values between survey lines using the kriging gridding method. It is possible that low-density

features exist between survey lines that have not been detected by the microgravity survey.

DETECTABILITY AND RESOLUTION

The detectability of subsurface features with microgravity is dependent on their density contrast, depth, size, and geometry. Shallow targets produce a short wavelength (narrow) response. Deeper targets produce a longer wavelength (wide) response. In order to be detected, a subsurface feature must be large enough and shallow enough to produce a response above the noise threshold with a wavelength that can be defined by the survey station layout. Conservatively, anomaly magnitudes larger than 5 μ Gals with full widths of 40 feet or more are detectable in this survey.

Lateral resolution is limited by the spacing between measurements and by the geometry of subsurface targets. The lateral resolution of a discrete subsurface feature is approximately 20% of its depth (i.e. a target at a depth of 50 feet can be defined with a lateral resolution of approximately ± 10 feet).

RESULTS

Figure 2 shows a contour map of the Bouguer gravity data, with values ranging between -160 and +394 μ Gals (relative to the median value of 0 μ Gals). There is a strong gradient from high to low Bouguer gravity values inward from the edges of the pond. This gradient is due to the low-density ash surrounded by relatively higher-density residuum and weathered limestone. The lowest gravity values (shaded purple) form a WSW-ENE trend in the southern portion of AP3.

Based on the original pond bottom map (Georgia Power, 1971), the ash thickness ranges between 0 and 41 feet. The gravitational effects of ash thickness variations were calculated and removed from the Bouguer gravity data. The resulting *residual gravity* data are shown in Figure 3 with values ranging between -106 and +278 μ Gals (relative to the median value of 0 μ Gals). If the pond bottom map accurately represents the true bottom of the ash, the residual gravity values should represent variations in density within the residuum and weathered limestone beneath the ash.

Low residual gravity values are concentrated in the southern half of AP3, with the lowest values forming a WSW-ENE trend. It appears that this trend may continue beyond the limits of the survey. Smaller pockets of low residual gravity are also evident north and east of the berm located on the western side of AP3.

Cross-Sectional Models

In order to visualize the possible causes of the low-gravity trend, cross-sectional models were developed along Line 5 and through the combined profile of Lines 2, 3A, and 3. The modeled ash thickness is constrained by the original pond bottom map (Georgia Power, 1971) and the top of limestone is constrained by existing borings (Geosyntec). The pond bottom elevation was held fixed in the model, while the top of limestone was iteratively varied to match broad trends in the observed data. A density of 1.6 g/cc was used to approximate the density of ash, while a density of 1.9 g/cc was used to

approximate the density of the residuum. A density of 2.4 g/cc was used for the upper limestone.

Figure 4 shows the cross-sectional model along Line 5. The modeled gravity (solid line in Figure 4) fits the observed gravity (filled circles in Figure 4) well, except in the low-gravity anomaly between Stations 100 and 360. Since the effects of the ash thickness and top of limestone variations are accounted for in the model, the low-gravity anomaly must be due to other low-density features that may include karst dissolution within the limestone.

Figure 5 shows the cross-sectional model of the combined profile of Lines 2, 3A, and 3. The modeled gravity fits the observed gravity well, except in the low-gravity anomaly between Stations 100 and 420. The low-gravity anomaly must be due to other low-density features that may include karst dissolution within the limestone.

CONCLUSIONS

Microgravity data were acquired at a total of 323 locations within AP3. The microgravity data have excellent repeatability (low-levels of noise) and indicate anomalous conditions within a portion of AP3.

After removing the gravitational effects of the relatively low-density ash from the Bouguer Gravity, the residual gravity values contain a WSW-ENE trending low-gravity anomaly in the southern portion of AP3 that may extend beyond the boundaries of AP3. The low-gravity anomaly may be associated with karst features within the limestone, including dissolution-enlarged fractures and cavities. Due to inherent limitations of the microgravity method, a conclusion cannot be made about the exact size, depth, and number of low-density features that may be contributing to the low-gravity anomaly. Additional geophysical surveying (e.g., electrical resistivity) and exploratory borings may be needed to further characterize the low-gravity anomaly.

"Anomaly" is defined as a deviation from uniformity in physical properties (Sheriff, 2002). It is a term often used in geophysics to denote an area that is different than surrounding materials. Anomalies identified in this report are not confirmed until they are drilled and verified.

REFERENCES

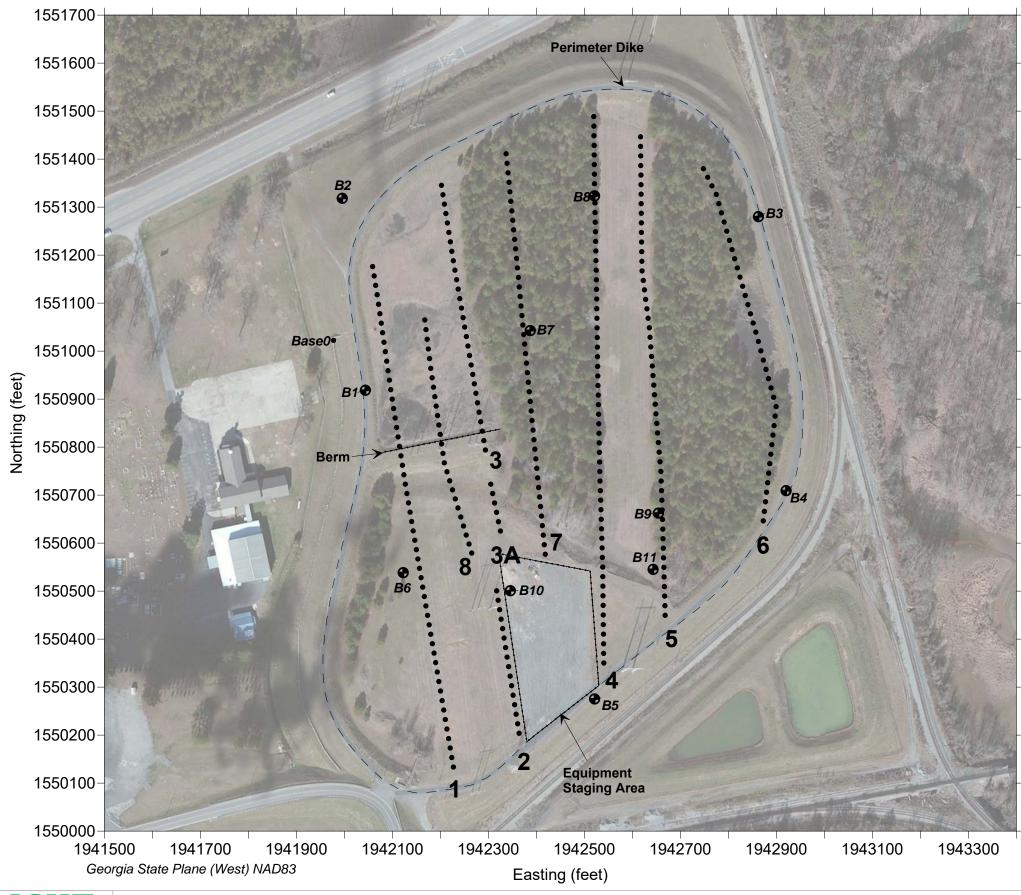
- ASTM, 2005, Standard guide for using the gravity method for subsurface investigation, ASTM D6430-99, West Conshohocken, Pennsylvania.
- Cogbill, A.H., 1990, Gravity terrain corrections calculated using Digital Elevation Models, Geophysics, 55(1), p. 102-106.
- Georgia Power, 1971, Hammond Plant Ash Pond No. 3 boring plan, Drawing No. 10-201 D-50, Georgia Power Co, Atlanta, Georgia.
- Long, L. T. and Kaufmann, R. D., 2013, *Acquisition and analysis of terrestrial gravity data,* Cambridge University Press, First Edition, ISBN: 978-1107024137, 192 p.
- Longman, I.M, 1959, Formulas for computing the tidal accelerations due to the sun and moon, J. Geophysical Research, 64, p. 2351.
- Seigel, H.O., 1995, *High precision gravity survey guide,* Scintrex Ltd., Concord, Ontario, 120 p.
- Sheriff, R.E., 2002, *Encyclopedic dictionary of applied geophysics*, Society of Exploration Geophysicists, Fourth Edition, ISBN: 0-931830-47-8, 429 p.
- Telford, W.M., Geldart, L.P., and Sheriff, R.E., 1990, *Applied Geophysics,* Cambridge University Press, Second Edition, 770 p.

APPENDIX A INSTRUMENT CALIBRATION

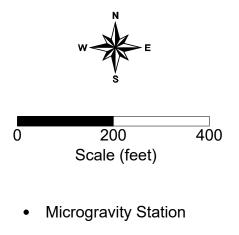
Sincerely,

Lengemann Of Florida

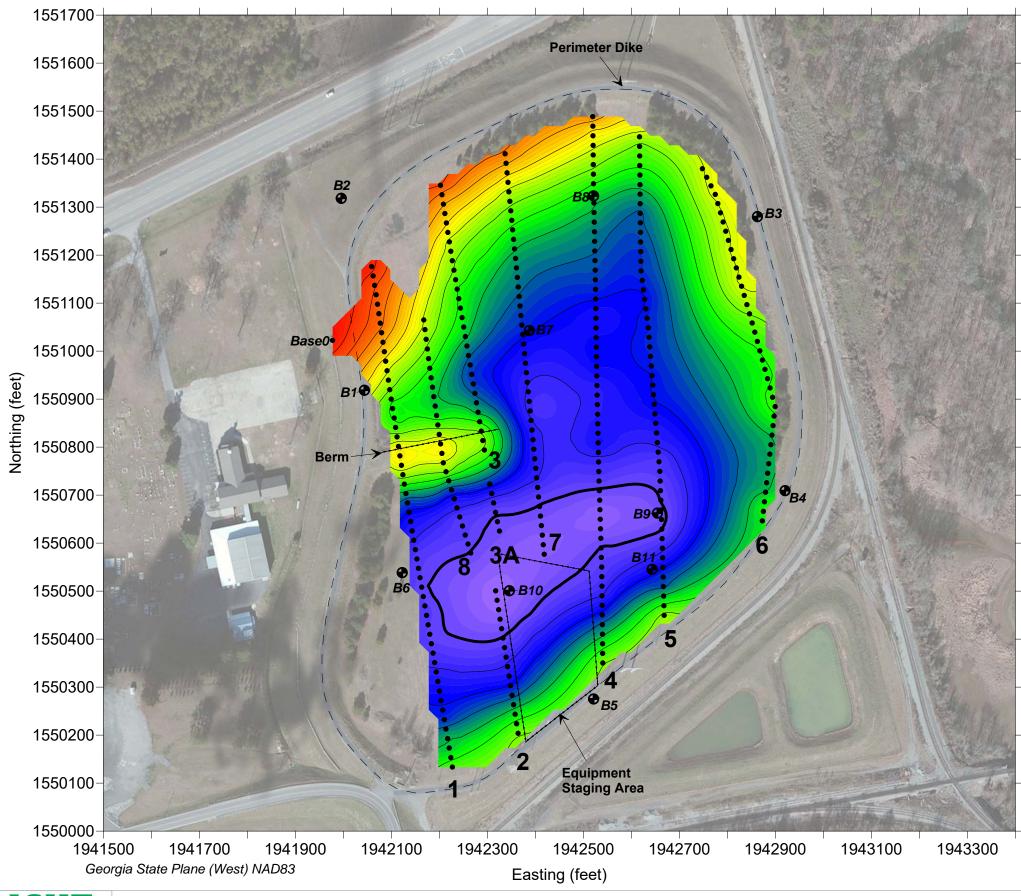
Mike Smith

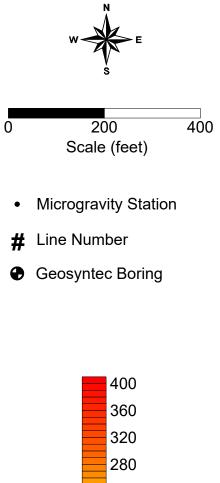

Service Technicain

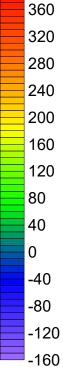
43316 SR 19 Altoona, Florida 32702 352-669-2111 800-342-9238 FAX 352-669-4244 www.lengemann.us


Sctrintrex CG-5 S/N 40800077

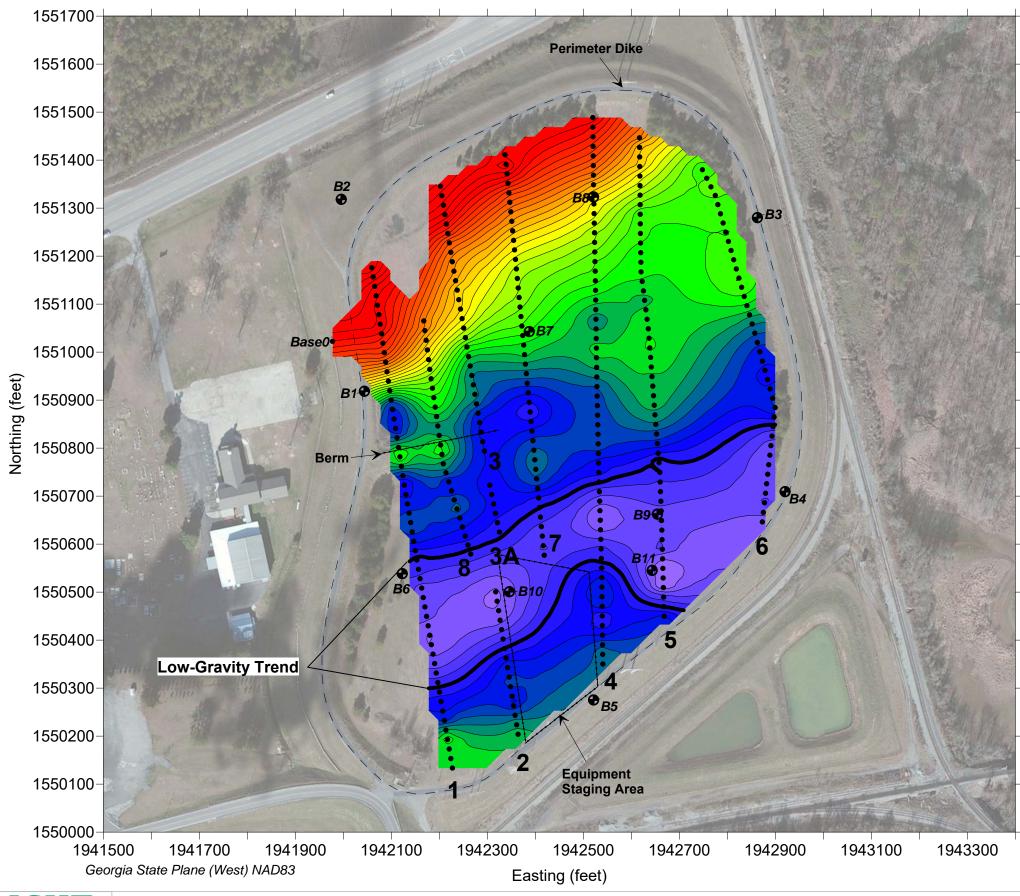
Note: There is no NIST or other international standard calibration for a relative gravimeter and no factory calibration is necessary. Spotlight Geophysical Services performs regular checks of the drift and level constants for the meter. The manufacturer recommends that these constants be checked every few months. However, the X and Y level offset constants were checked daily before each day of data acquisition since they can drift during instrument transport to and from the site.

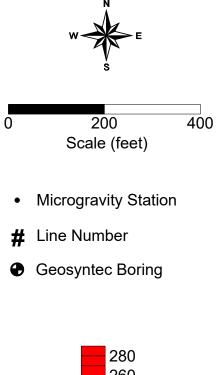

Date	Level X-	Level Y-	Level X-	Level Y-	Drift		
	Offset	Offset	sensitivity	sensitivity			
2/8/17	-35.0	-80.2	511.6	551.3	0.295		
2/9/17	-33.0	-69.6	511.6	551.3	0.295		
2/10/17	-34.9	-79.2	511.6	551.3	0.295		
2/11/17	-34.6	-77.7	511.6	551.3	0.295		

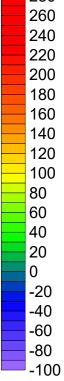




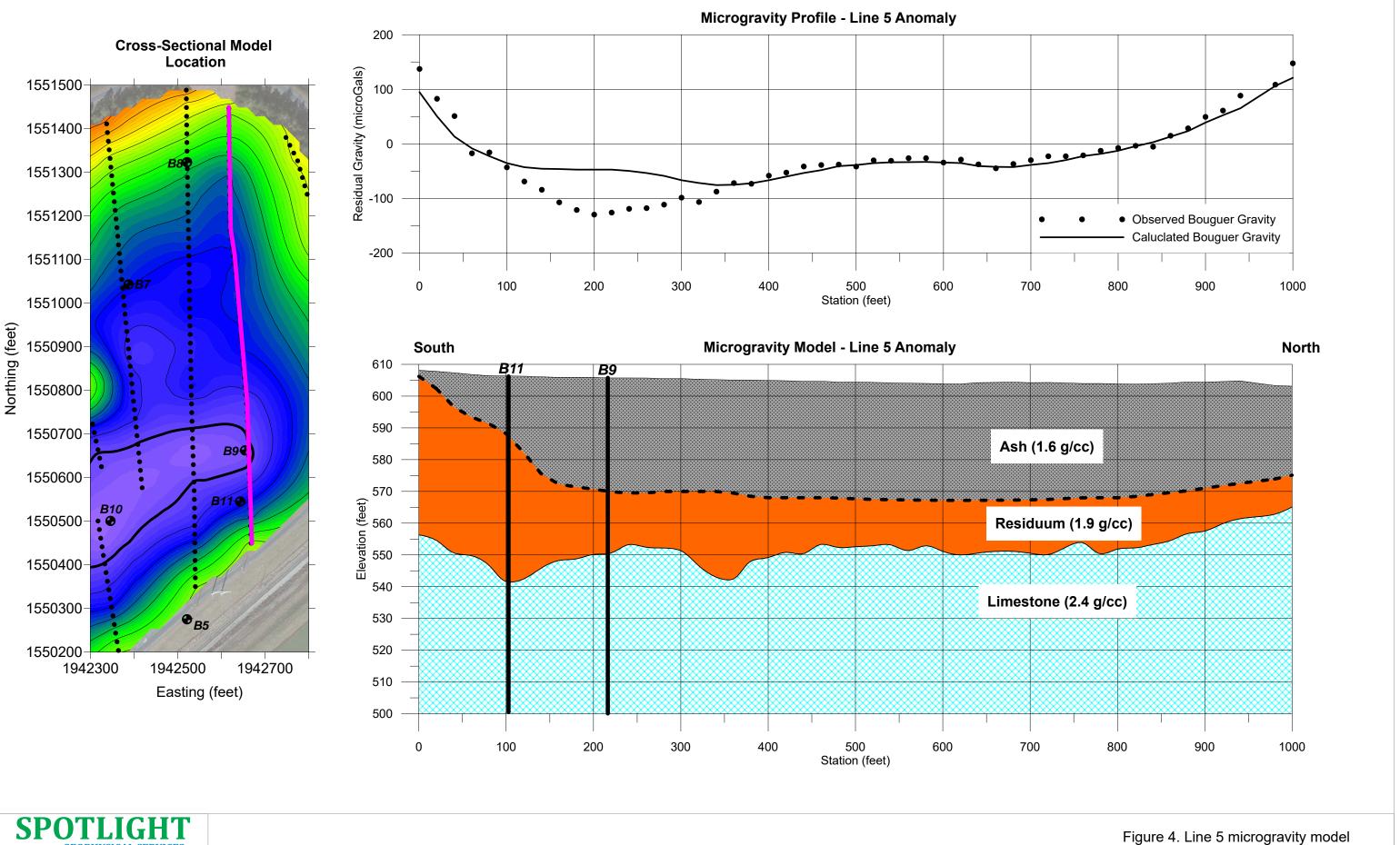
- **#** Line Number
- Geosyntec Boring

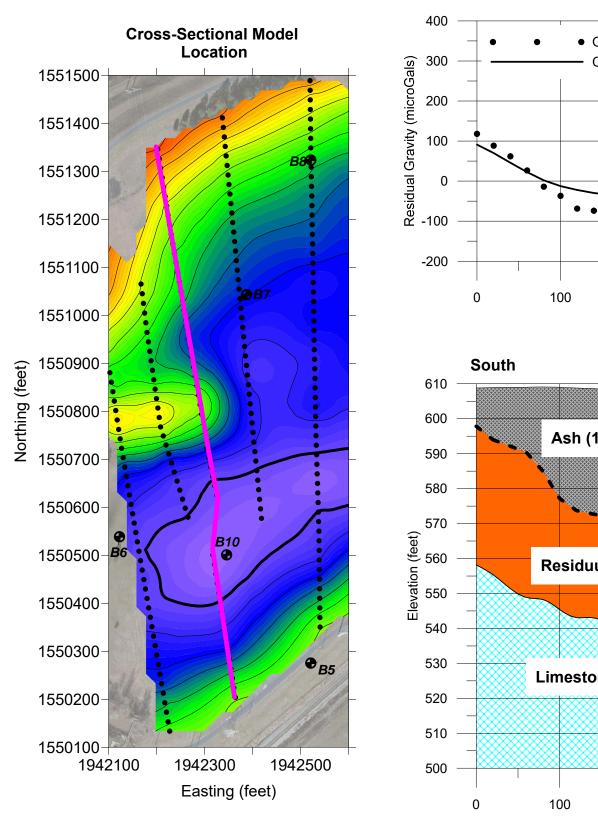


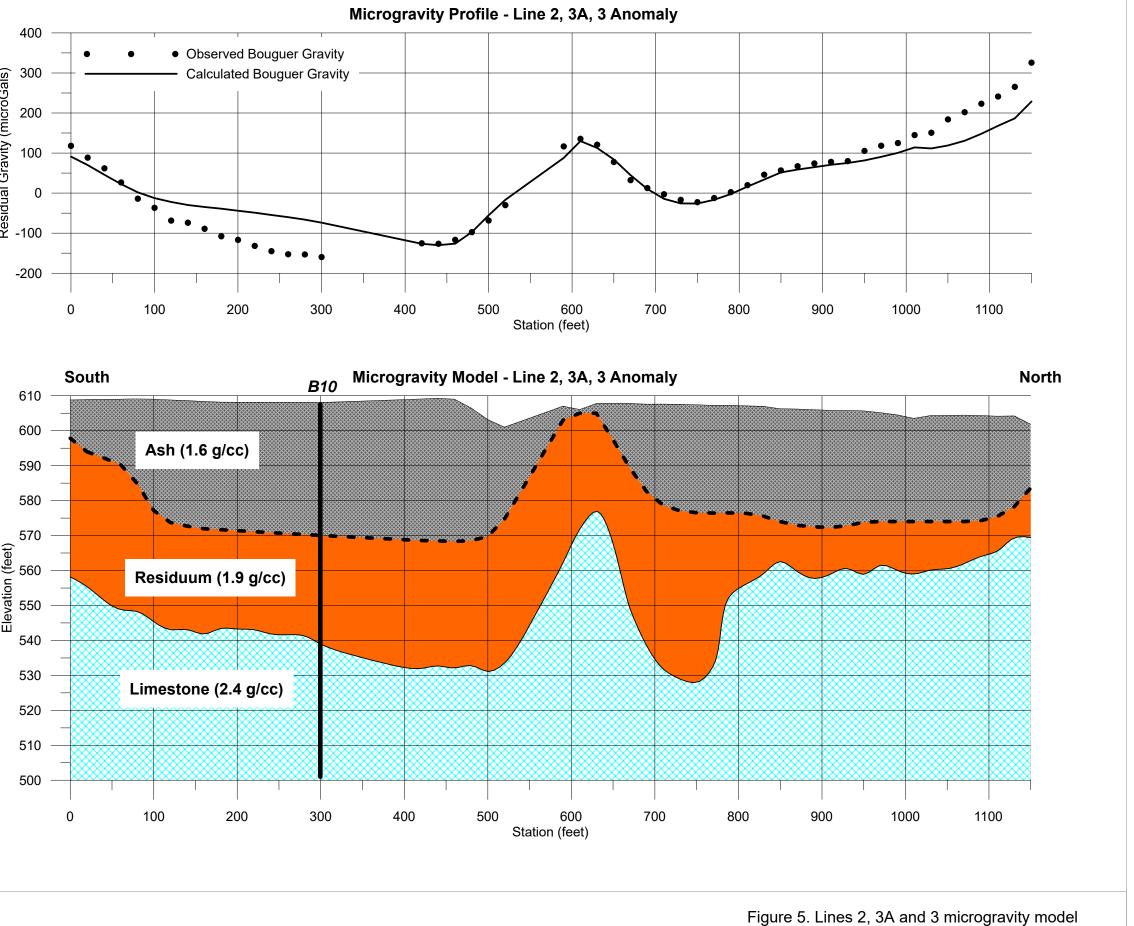


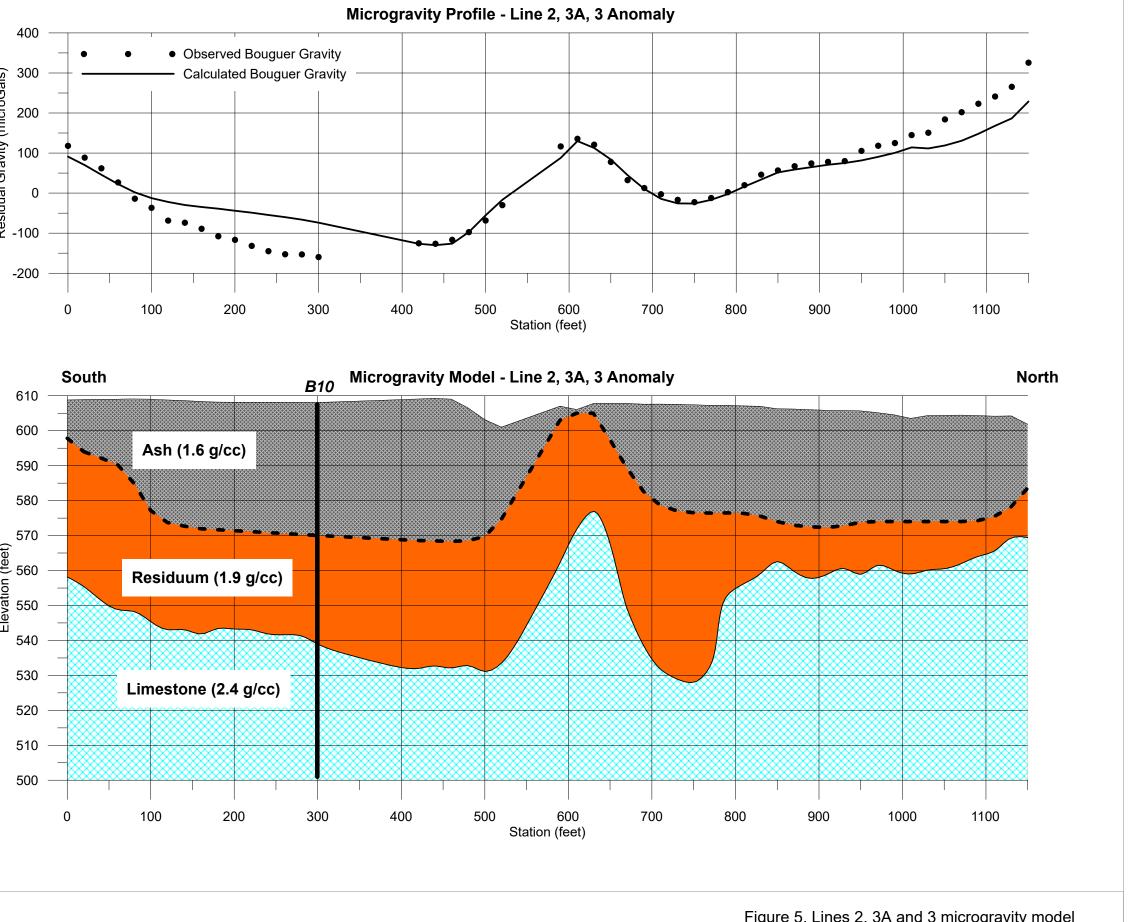


Bouguer Gravity (microGals) 10-microGal contour interval








Residual Gravity (microGals) Effects of Ash Thickness Removed 10-microGal Contour Interval

a member of The GEL Group INC

problem solved

Geophysical Logging Report

Georgia Power Plant Hammond

Rome, Georgia

Performed for:

Geosyntec

February 17, 2017

GEL Geophysics LLC

Charleston, SC

Charlotte, NC

Raleigh, NC

Atlanta, GA

www.gelgeophysics.com

Geophysical Logging Report Georgia Power Plant Hammond Rome, Georgia

TABLE OF CONTENTS

<u>Section</u>	<u>on</u>	Page	<u>!</u>
Signa	ture f	Page	ii
Execu	utive S	Summaryi	ii
1.0	Intro	duction	1
2.0	Equi	pment and Methodology	1
	2.1	Acoustic Televiewer	1
	2.2	3-Arm Caliper	2
	2.3	Natural Gamma	2
	2.4	Impeller Flowmeter	2
	2.5	Borehole Video Logging	2
3.0	Field	Procedures	3
4.0	Data	Processing and Results	3

Appendices

Appendix 1	Geophysical Logs
Appendix 2	Rose Diagrams
Appendix 3	Impeller Flowmeter Logs and Fracture Characteristics
Appendix 4	B9 Borehole Video Logging Screen Shots

Signature Page

This report, entitled "Geophysical Logging Report, Georgia Power Plant Hammond, Rome, Georgia" has been prepared for Geosyntec located in Kennesaw, Georgia. It has been prepared under the supervision of Mr. Jorgen Bergstrom at the request of and the exclusive use of Geosyntec. This report has been prepared in accordance with accepted quality control practices and has been reviewed by the undersigned.

> <u>GEL Geophysics, LLC</u> A Member of the GEL Group, Inc.

Serist

Jorgen Bergstrom, P.Gp. Senior Geophysicist

Scott D. Carney Director

February 17, 2017

Date

Geophysical Logging Report Georgia Power Plant Hammond Rome, Georgia

EXECUTIVE SUMMARY

GEL Geophysics performed geophysical borehole logging services in four borings located at the Georgia Power Plant Hammond in Rome, Georgia. The field investigation was performed on February 8, 2017 and February 10, 2017. These investigations were conducted to aid Geosyntec in evaluating potential fractures and other features in bedrock at the site. Acoustic televiewer, caliper and impeller flowmeter logging was conducted in all four borings. In boring B9, natural gamma and borehole video logging was also conducted.

The logging data was analyzed to determine the location, orientation, and aperture of fractures; and other features. In addition to these data sets, synthetic caliper logs were calculated from the acoustic televiewer travel time data to aid in the interpretation. Dip, azimuth (dip direction), and aperture were calculated for each detected fracture based on the televiewer dataset. Flowmeter logging data was analyzed to assess water producing features.

Geophysical Logging Report Georgia Power Plant Hammond Rome, Georgia

1.0 INTRODUCTION

GEL Geophysics performed geophysical borehole logging services in four borings located at the Georgia Power Plant Hammond in Rome, Georgia. Acoustic televiewer, 3-arm caliper and impeller flowmeter logging was conducted in all four borings. In boring B9, natural gamma and borehole video logging was also conducted. The field investigation was performed on February 8, 2017 and February 10, 2017. The logging data was analyzed to determine the location, orientation, and aperture of fractures; and other features. In addition to these data sets, synthetic caliper logs were calculated from the acoustic televiewer travel time data to aid in the interpretation.

2.0 EQUIPMENT AND METHODOLOGY

The information below is an overview of the geophysical methodologies used for this investigation. The intent of this overview is to give the reader a better understanding of each method, and background information as to what is actually measured, the resolution of the method, and the limitations imposed by site-specific subsurface conditions.

2.1 Acoustic Televiewer

Acoustic televiewer logging produces a high resolution, magnetically oriented digital image to map the location, aperture and orientation of intersecting fractures, foliations, and lithologic contacts. The Acoustic televiewer tool emits a rotating, narrow, acoustic beam that is reflected off the borehole wall. The travel time and amplitude of the reflected wave are recorded by the tool and used to create borehole images. Both datasets are useful for identifying the location, aperture and orientation of fractures. The amplitude of the reflected signal will decrease at the location of fractures and the travel time will increase. The travel time data can also be used for developing a high resolution caliper log for a more comprehensive analysis of fractures. Acoustic televiewers can only be used in fluid filled boreholes. However, the fluid does not have to be optically clear for the method to work. The acoustic televiewer has a vertical resolution of 2 millimeters.

2.2 3-Arm Caliper

Caliper logging is used to generate a profile of the borehole diameter with depth. The tool measures the borehole diameter using three spring-loaded arms. Narrow enlargements in the borehole diameter can, in most cases, be attributed to fractures. Caliper logging can be conducted above and below the water surface.

2.3 Natural Gamma

Natural gamma tools measure the gamma radiation from the formation. These logs can be used to discriminate between different formations by utilizing variations in the concentration of naturally occurring radioactive isotopes such as potassium, uranium and thorium. These logs are particularly popular for correlating logs and locating clay and shale formations since radioactive elements tend to concentrate in these materials. Natural gamma logging can be conducted in cased and uncased boreholes, water-filled and dry.

2.4 Impeller Flowmeter

The impeller (spinner) flowmeter consists of a lightweight three-bladed impeller and a fiber-optic sensing mechanism to detect spinner rotation. Continuous logs of flow rates may be made at a constant logging speed and supplemented by more accurate stationary measurements at selected depths. The main shortcoming of impeller-type flowmeters is the lack of sensitivity to low-velocity flow.

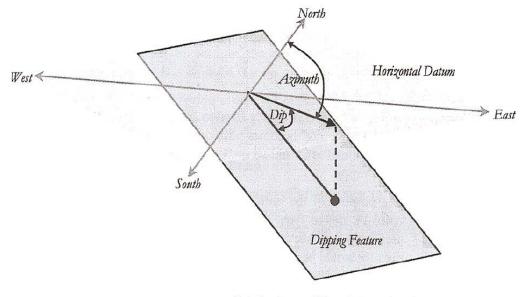
2.5 Borehole video logging

Borehole video logging is typically conducted to visually inspect and investigate well conditions, geological strata, voids and fractures. The color video well logging system is equipped with a submersible camera mounted on a Kevlar reinforced, small diameter coaxial cable. Lights are housed in the camera and provide lighting for the down hole image. The control unit provides all the controls to operate the camera and reel assembly, and is equipped with a 7-inch LCD color video monitor. The survey is recorded on a flash drive during data collection and is later transferred to a PC.

3.0 FIELD PROCEDURES

The following equipment and software was used for this investigation: Data Acquisition System: Mount Sopris Matrix data logger Logging Winch: MX system with 1,500 feet of cable Acoustic Televiewer: QL40-ABI-2G 3-Arm Caliper: QL40-CAL Impeller Flowmeter: QL40-SFM Natural Gamma: 2PGA-1000 Logging interpretation software: WellCAD v 5.1 by Advanced Logic Technology Borehole video system: Pearpoint Flexiprobe P340 camera system

Acoustic televiewer, caliper, and impeller flowmeter logging was conducted in all for borings. Natural gamma and borehole video inspection was conducted in B9 only. A summary of the configuration of the boreholes is provided below. All depth measurements are referenced from ground surface. All borings are surface cased and open hole below the casing.


Well ID:	B2	B3	B4	B9
Ground surface elevation (ft):	595.80	609.15	608.39	605.50
Bottom of casing (ft):	40.2	55.3	55.8	47.7
Casing material:	STEEL	STEEL	STEEL	STEEL
Casing diameter (in):	5.25	5.25	5.25	5.40
Total depth logged (ft):	104.0	105.0	70.3*	77.2*
Open hole diameter (in):	4.75	4.75	4.75	5.00

* Acoustic televiewer logging stopped short of the total depth logged in B4 and B9 due to obstructions

4.0 DATA PROCESSING AND RESULTS

The logs were analyzed for fractures and other features using WellCAD software, manufactured by Advanced Logic Technology. The travel time data from the acoustic televiewer log was used to develop synthetic caliper logs. Fractures were interpreted through a complete data analysis of all logs. The logs are presented in Appendix 1 and a fracture summary for each well is provided below. Dip, azimuth (dip direction), and aperture were calculated for each detected fracture where available in acoustic televiewer data. Fractures with no orientation noted were detected with caliper only. The fracture data

was corrected from apparent to true dip and azimuth using deviation logs included with the televiewer dataset. The azimuth or dip direction is measured clockwise from magnetic north (Figure 1). Attributes for all identified fractures for the borings listed in the tables following this section. Dominating fractures are shown in bold and italics text, medium size fractures are shown in bold, and smaller fractures in normal text. Fracture rose diagrams are presented on Appendix 2. Flow logs and fracture characteristics are shown on Appendix 3. The borehole video log for boring B9 has been submitted to Geosyntec in a digital format. A couple of screenshots are included in Appendix 4. All depth measurements are referenced from ground surface.

Relations between Dip and Azimuth angle

Figure 1 Explanation of azimuth and dip for fractures

Fracture Summary

B2		•		
Depth	Elev.	Azimuth	Dip	Aperture
ft	ft	deg	deg	mm
40.9	554.9	126	42	5
42.0	553.8	111	48	15
43.9	551.9	126	34	6
45.4	550.4	166	31	12
46.3	549.6	150	7	263
49.5	546.3	144	47	36
50.7	545.1	153	28	27
53.5	542.3	168	57	8
54.3	541.5	175	46	16
58.1	537.7	180	54	8
58.2	537.6	171	51	10
58.8	537.0	181	57	10
60.7	535.1	167	19	7
63.7	532.1	152	47	1
64.1	531.8	160	43	7
64.5	531.3	164	52	6

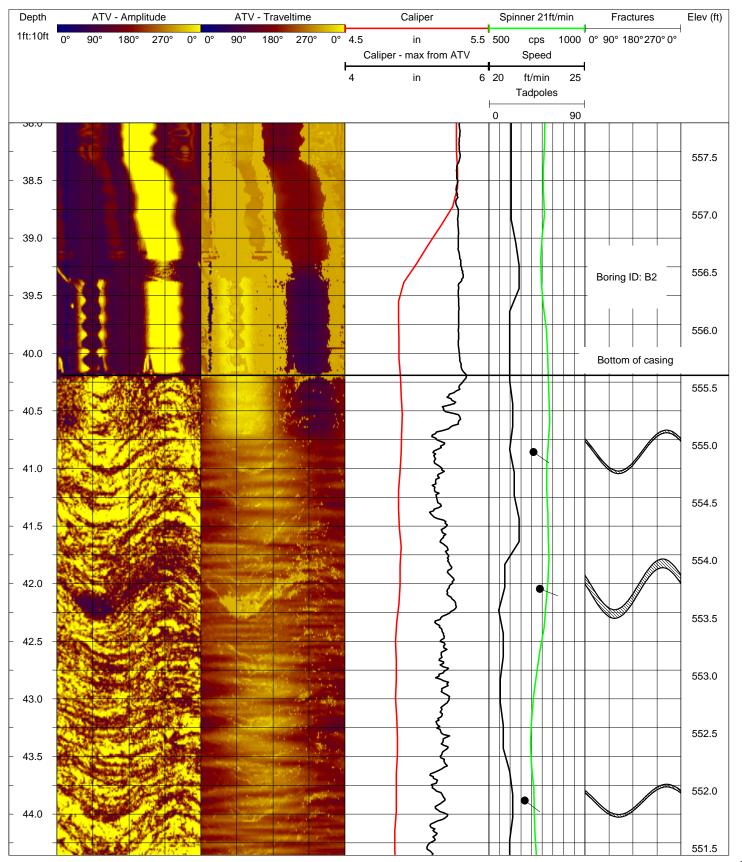
Depth	Elev.	Azimuth	Dip	Aperture
ft	ft	deg	deg	mm
66.0	529.8	169	26	8
66.3	529.5	172	34	25
70.7	525.1	148	52	4
73.5	<u>522.3</u>	355	10	27
73.6	522.2	145	20	55
80.8	515.0	346	7	30
80.8	515.0	137	22	33
82.4	<u>513.4</u>	10	5	49
84.0	511.8	165	12	8
84.7	511.1	149	45	5
85.1	510.7	142	51	4
85.4	510.4	142	43	5
86.1	509.8	206	8	110
95.4	500.4	151	24	57
99.0	496.8	152	48	5
99.2	496.6	156	37	6

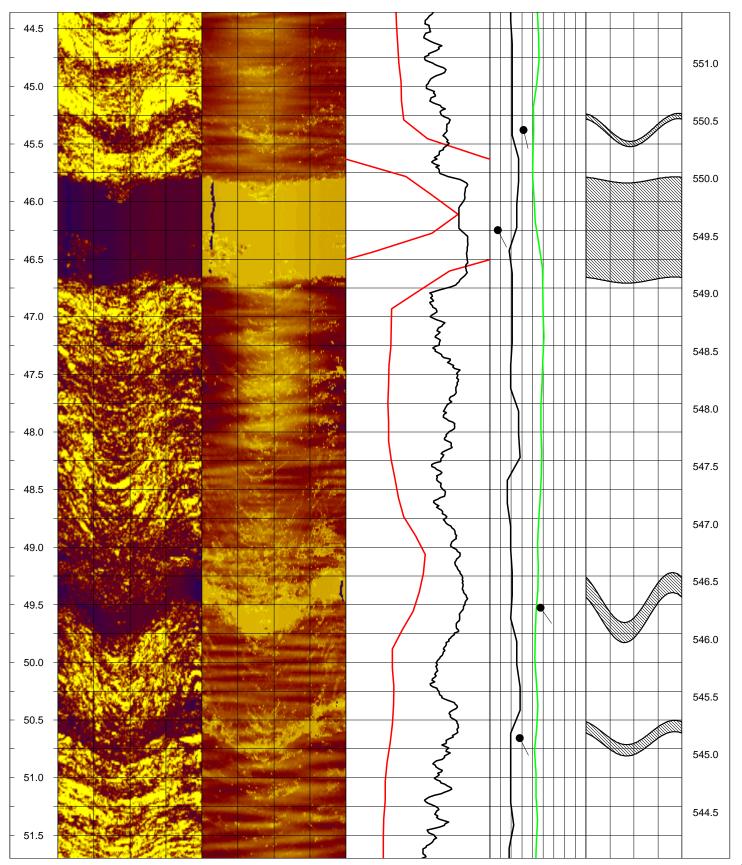
Fracture Summary

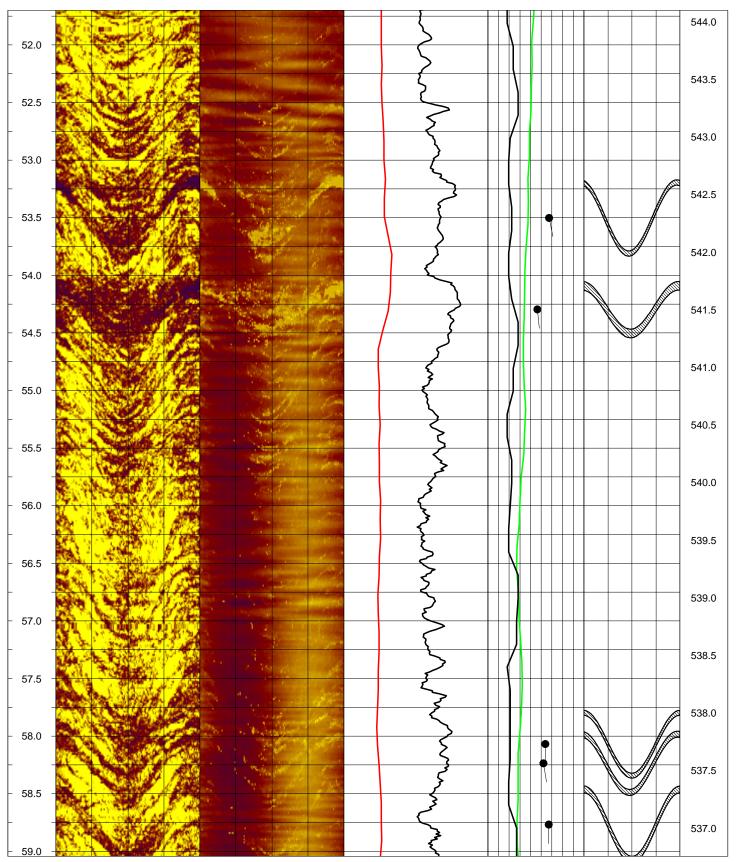
B3

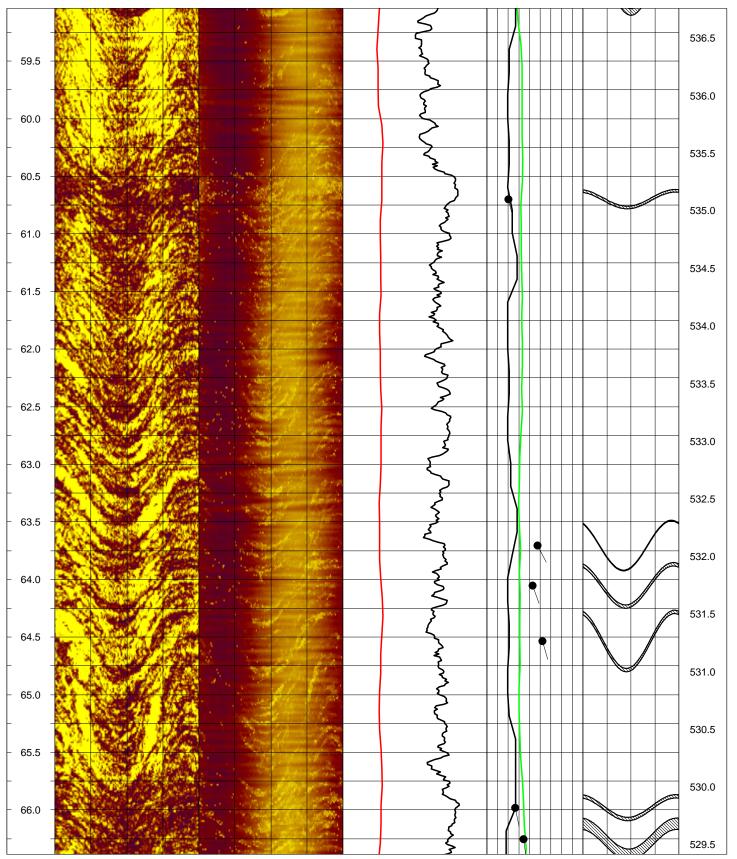
Depth	Elev.	Azimuth	Dip	Aperture
ft	ft	deg	deg	mm
59.8	549.3	152	10	5
59.9	549.2	147	9	6
64.2	544.9	<i>191</i>	24	87
65.6	543.5	157	5	70
73.0	536.2	168	25	93
73.7	535.4	174	41	15

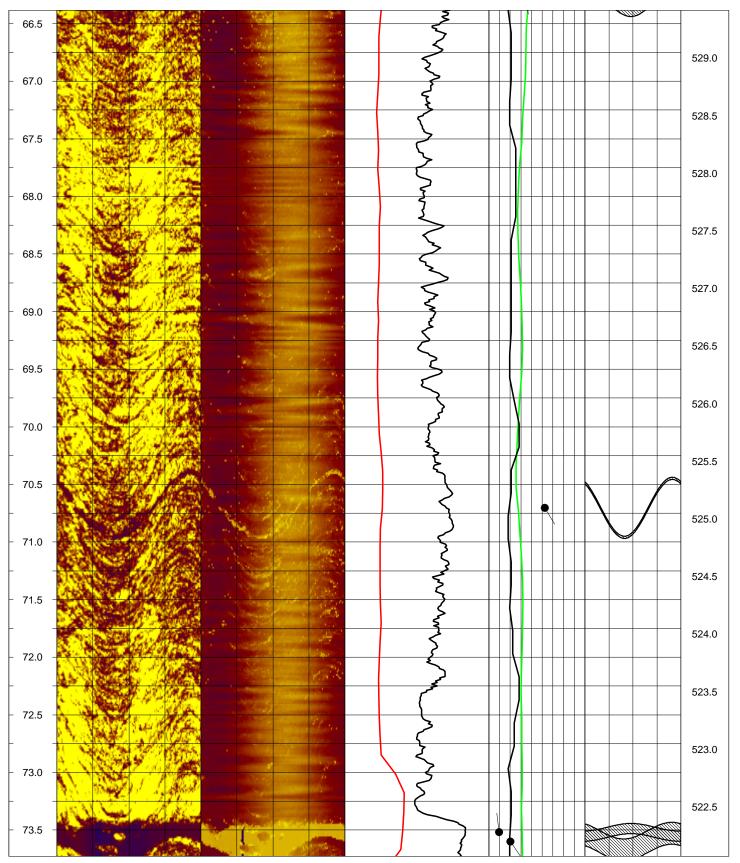
Depth	Elev.	Azimuth	Dip	Aperture
ft	ft	deg	deg	mm
74.4	534.8	233	2	14
77.6	531.5	150	10	15
81.7	527.5	186	6	1
81.8	527.4	176	3	4
84.5	524.7	198	23	5

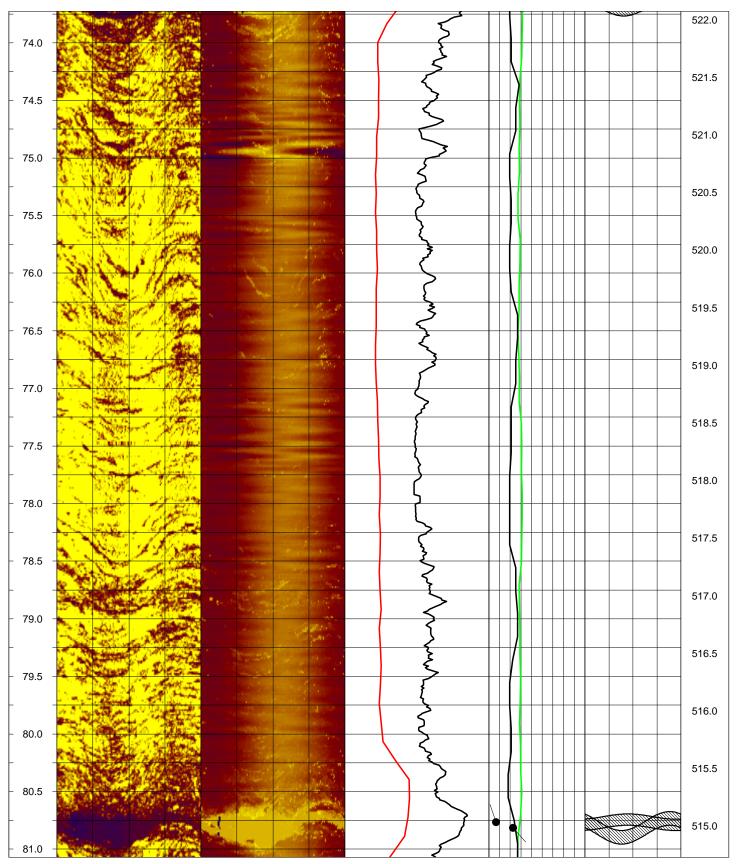

Fracture Summary

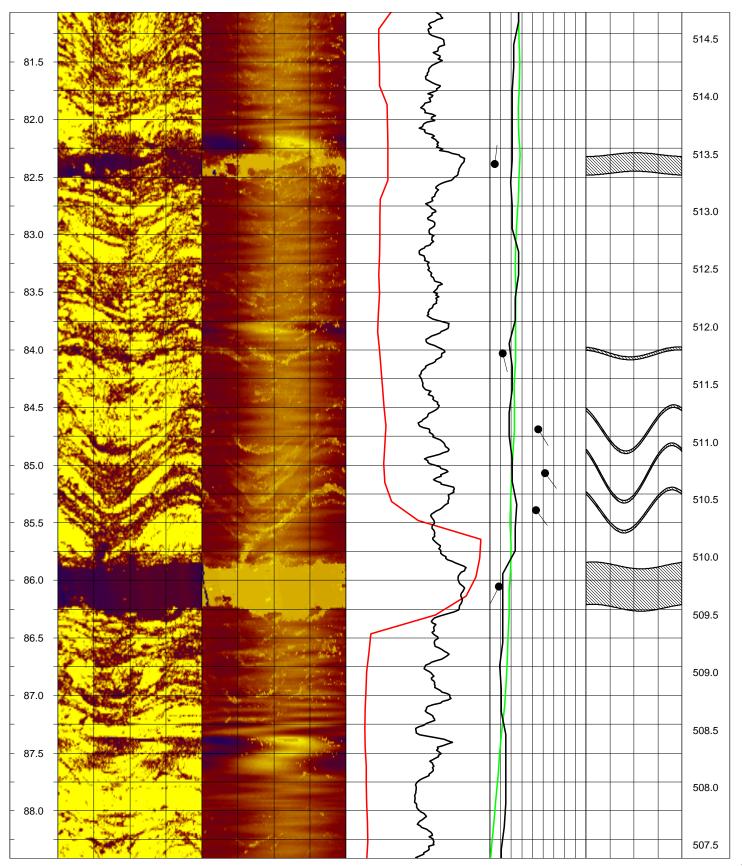

B4					B9
Depth	Elev.	Azimuth	Dip	Aperture	Depth
ft	ft	deg	deg	mm	ft
<u>59.6</u>	548.8	N/A	N/A	97	75.9
61.7	546.7	N/A	N/A	55	

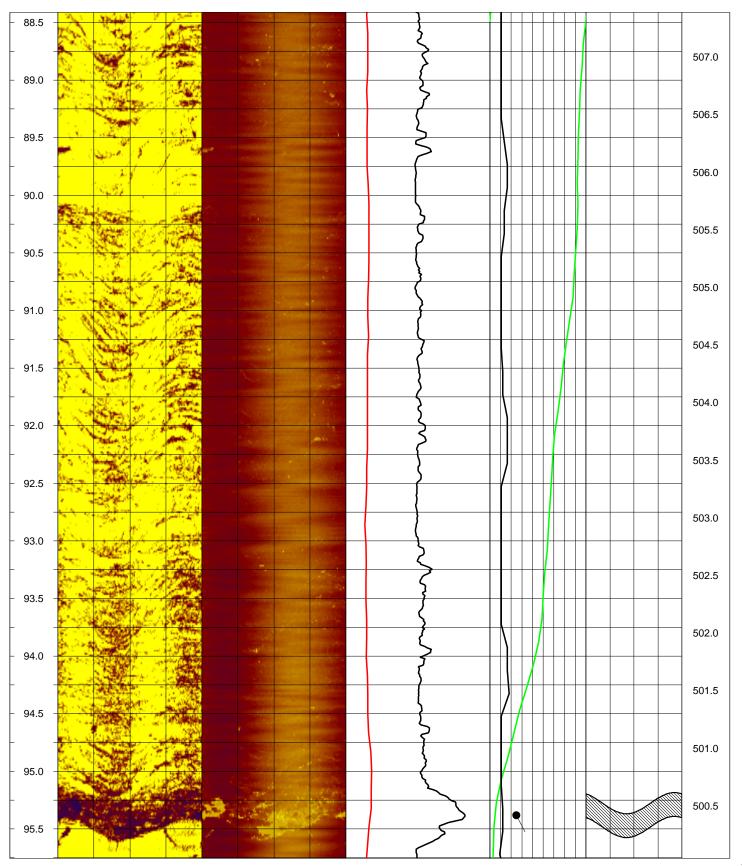

B9				
Depth	Elev.	Azimuth	Dip	Aperture
ft	ft	deg	deg	mm
75.9	<u>529.6</u>	N/A	N/A	<i>198</i>

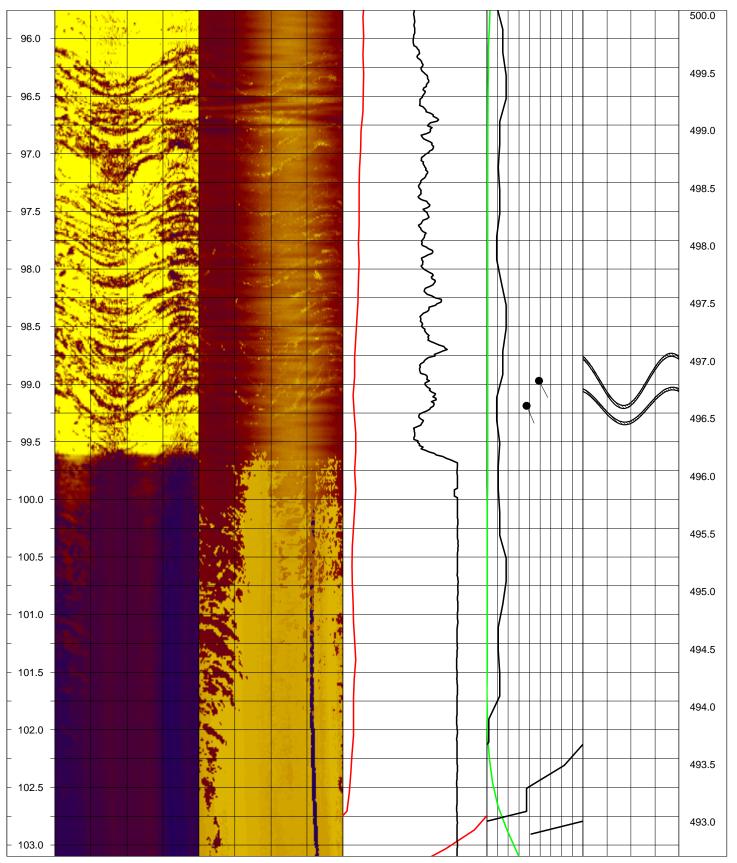

Dominating fractures are highlighted and shown in bold and italics text. Medium size fractures are shown in bold.

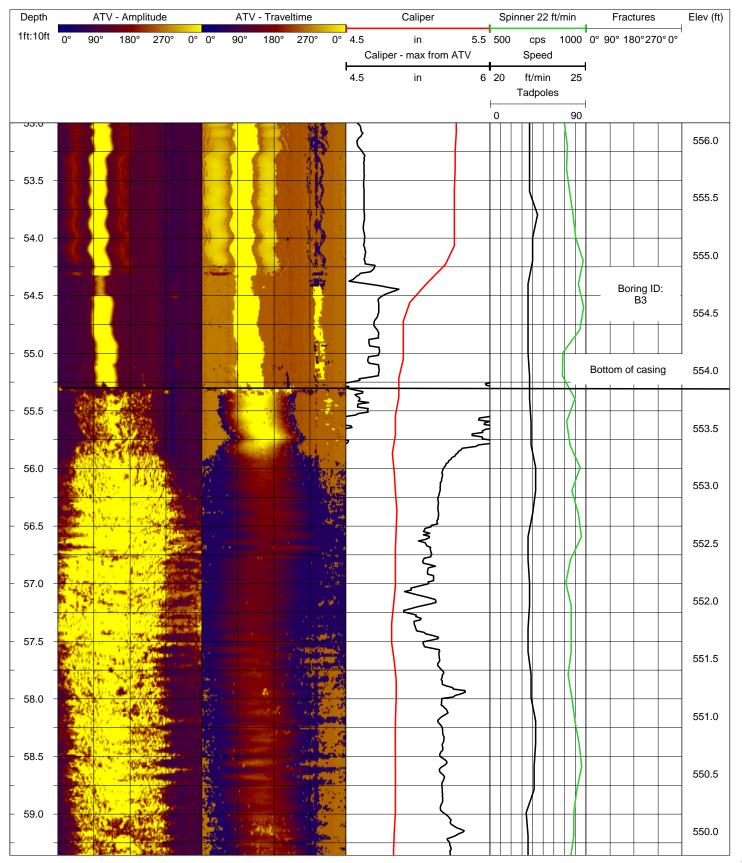

APPENDIX 1

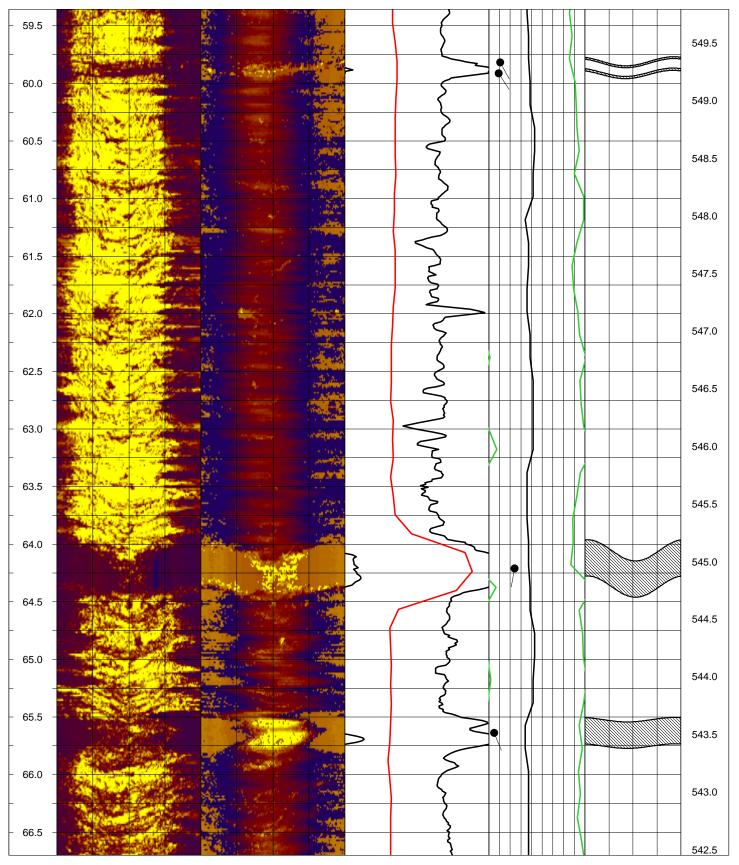


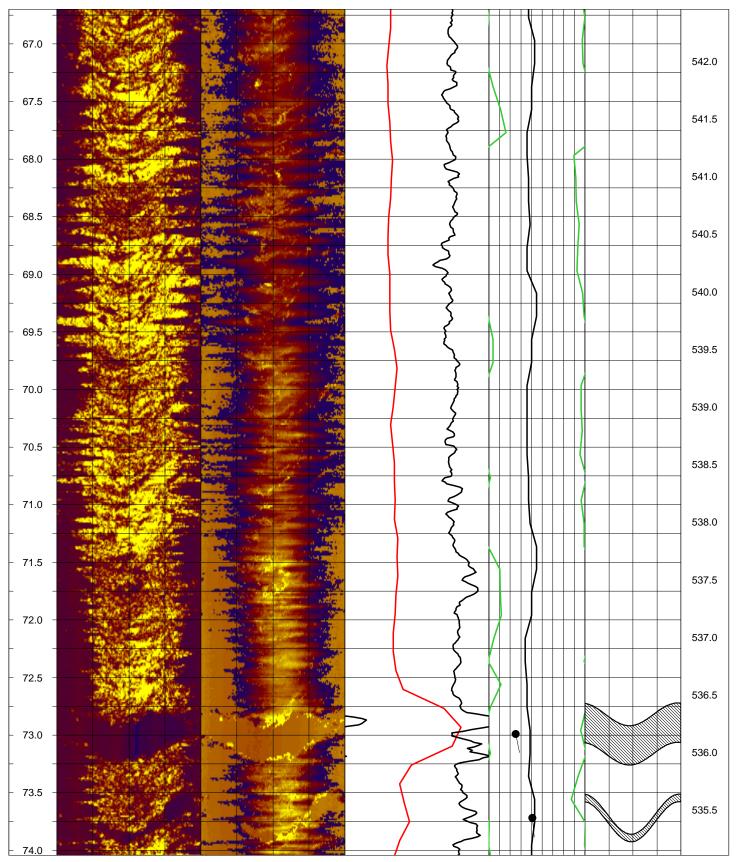


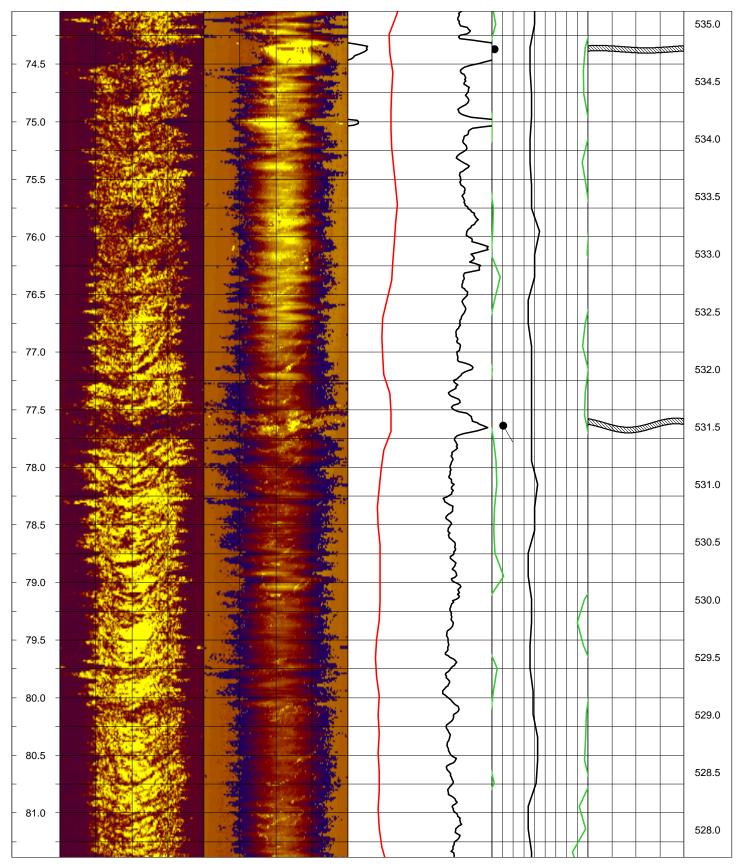


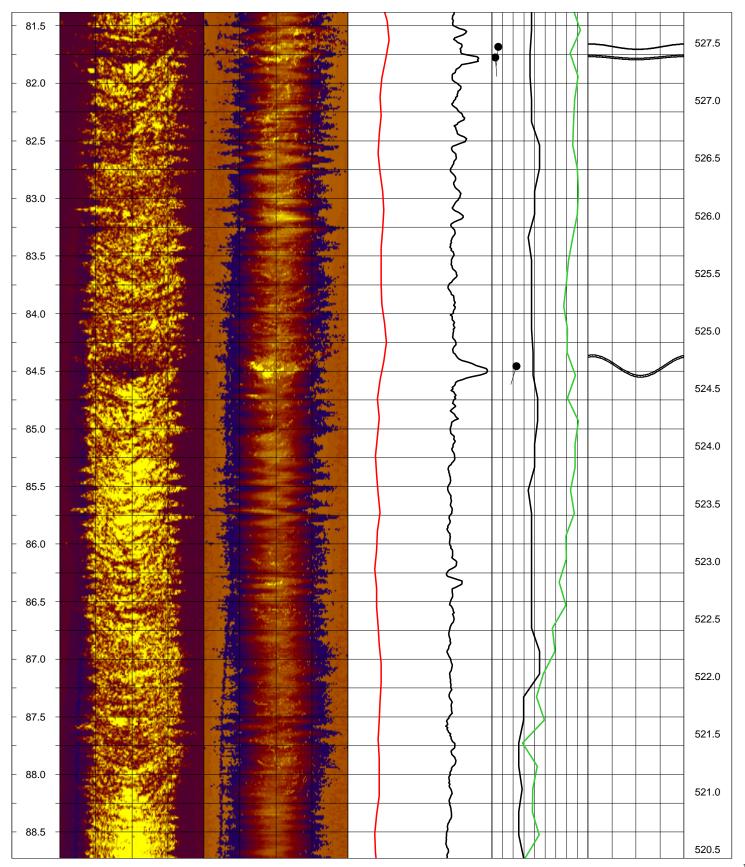


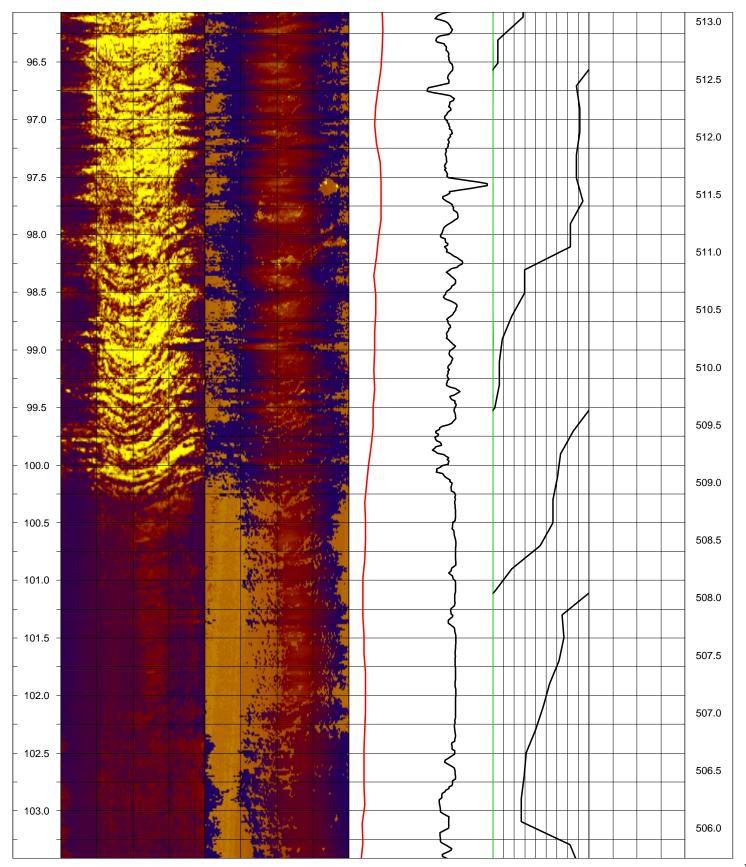


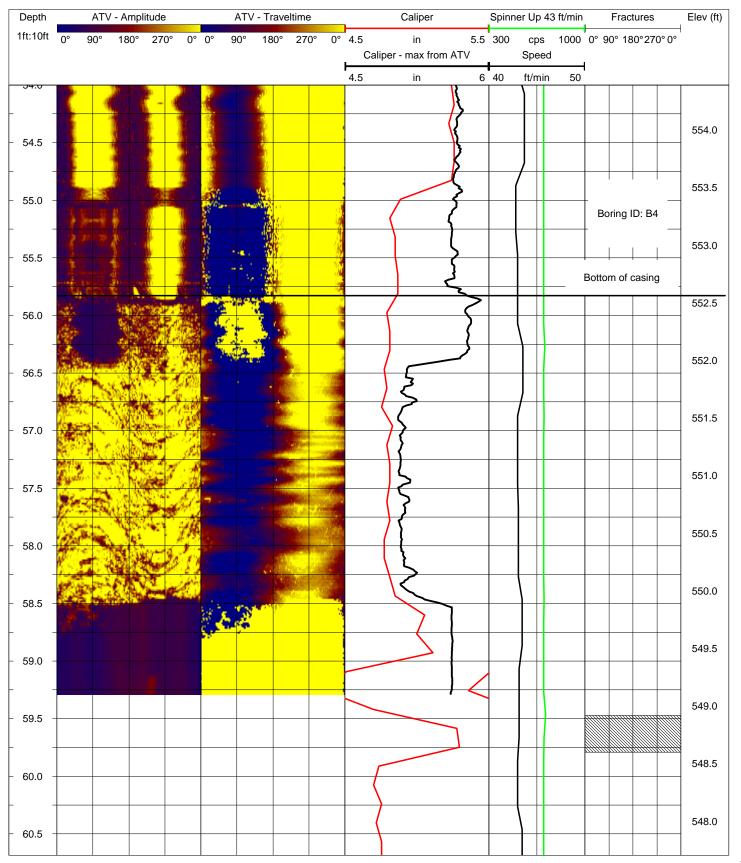


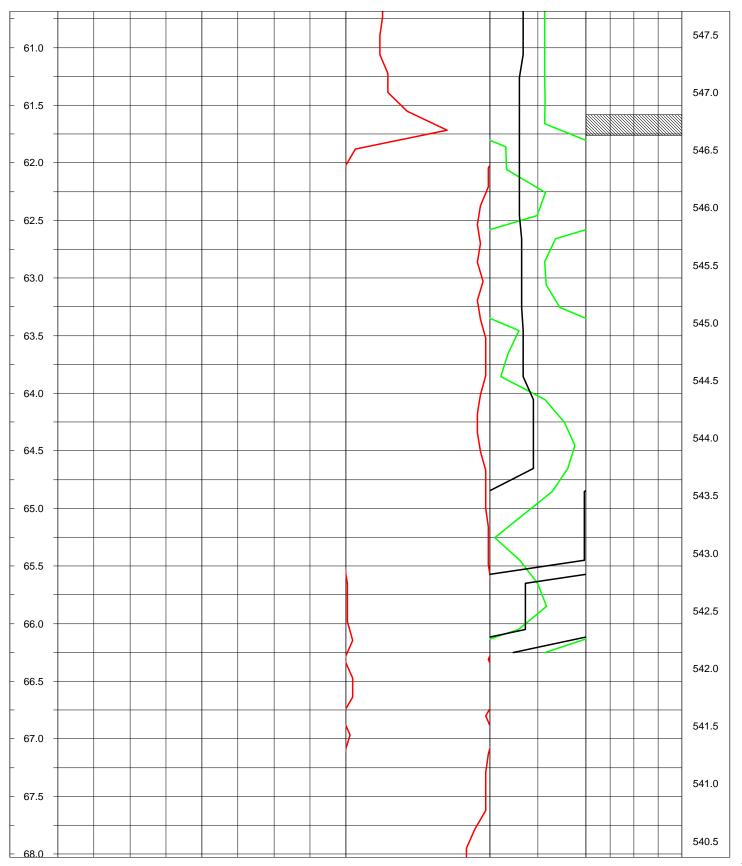




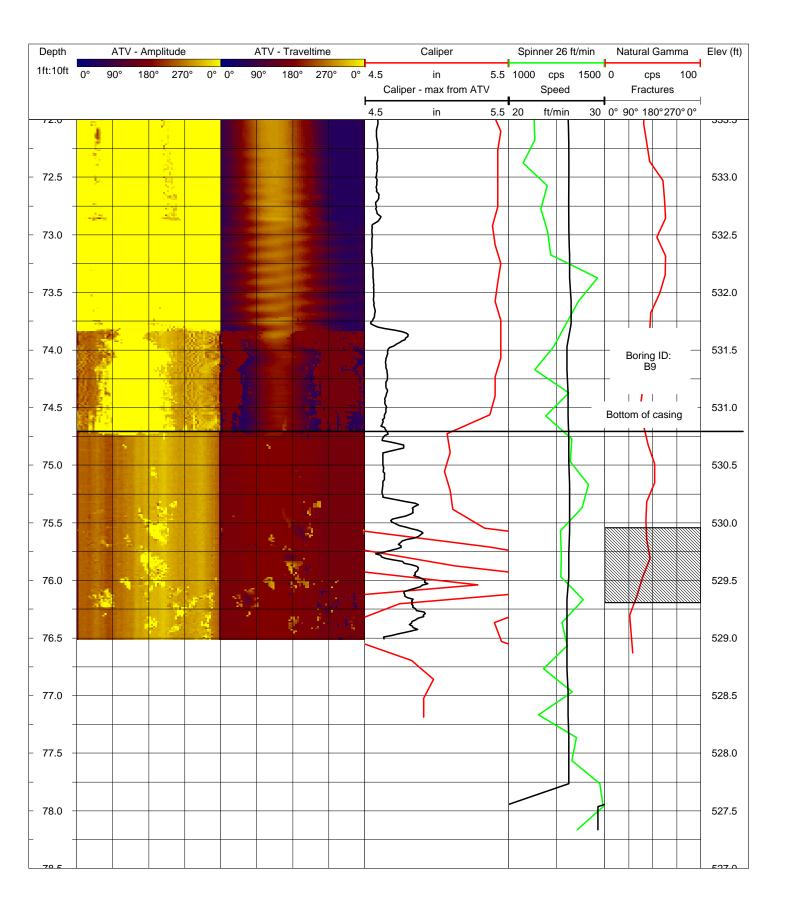

		9 6 6						492.5
								492.0
- 104.0 -		18						
								491.5
								491.0
- 105.0 -								



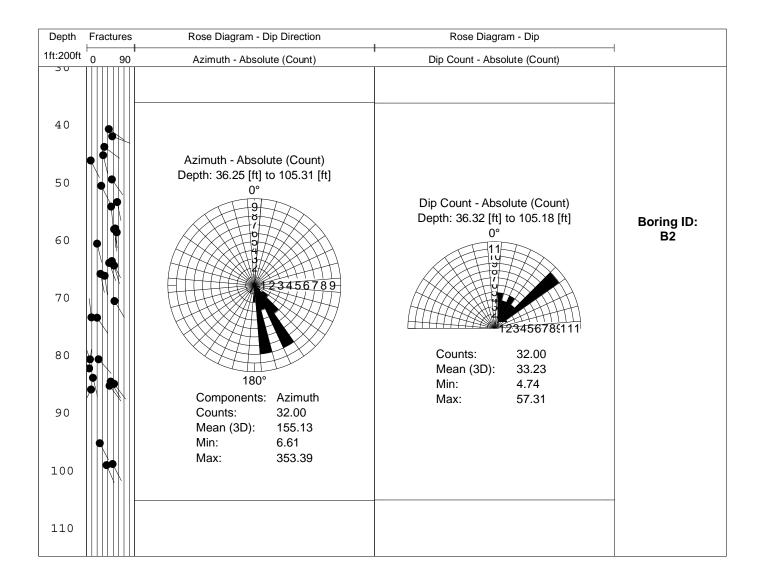


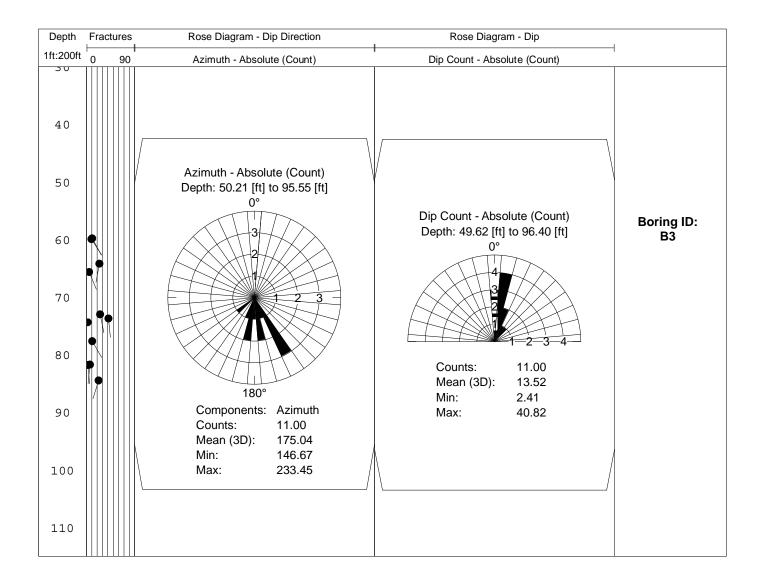


	The second se	The second states of the second	3		
- 89.0 -			5		
03.0			\$		520.0
- 89.5 -					
				λ	519.5
			$\overline{\boldsymbol{\lambda}}$		
- 90.0 -			5		
					519.0
0.05			\sum		
- 90.5 -					518.5
					010.0
- 91.0 -	Contraction of the local division of the loc				
			\sim		518.0
			5		
- 91.5 -					
			{		517.5
			5		
- 92.0 -	an a		\sim		517.0
			<u>></u>		517.0
- 92.5 -		and the second	ک		
	and the second		}		516.5
			5		
- 93.0 -	HAR AND A REAL PROPERTY OF	The second se	-		
L .		San Street Barrier and Street	\rightarrow		516.0
			2		
- 93.5 -		1	5		515.5
			{		515.5
- 94.0 -					
			ξ		515.0
		AND THE REAL PROPERTY OF	5		
- 94.5 -					
		يوكرون المحج ويزرون المحج	<u> </u>		514.5
			کے		
- 95.0 -		A CONTRACTOR OF A CONTRACTOR A	\sim		514.0
			\		514.0
- 95.5 -			<		
00.0			<u> </u>		513.5
-			\leq		
- 96.0 -		Adama and a second a se			

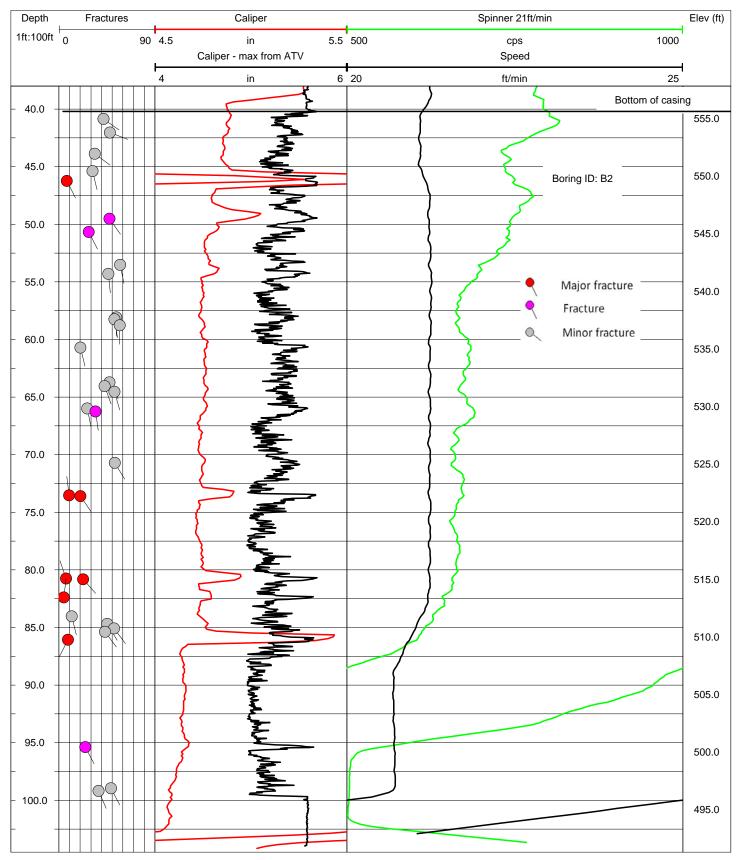


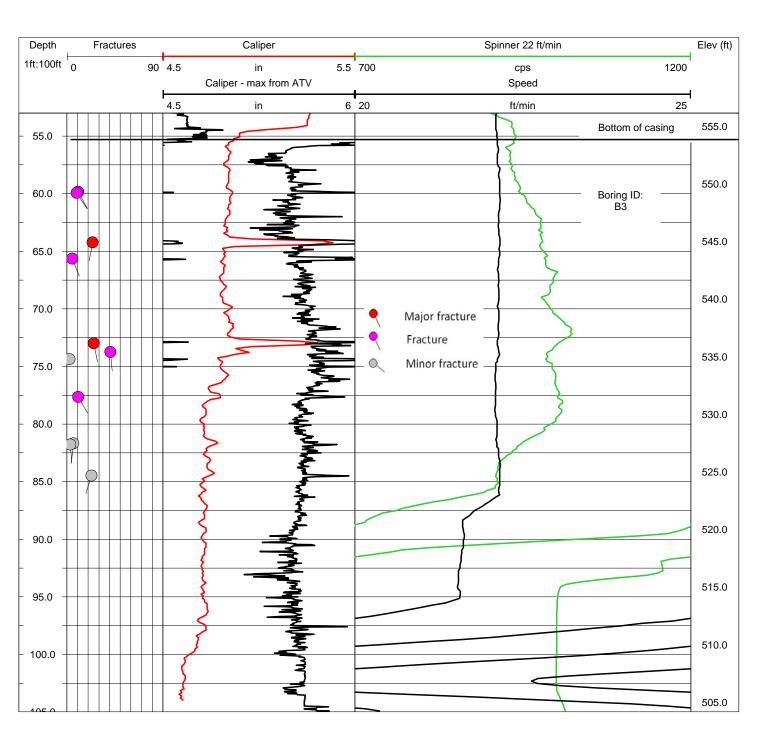
- 103.5 -	505.5
- 104.0 -	505.0
	504.5

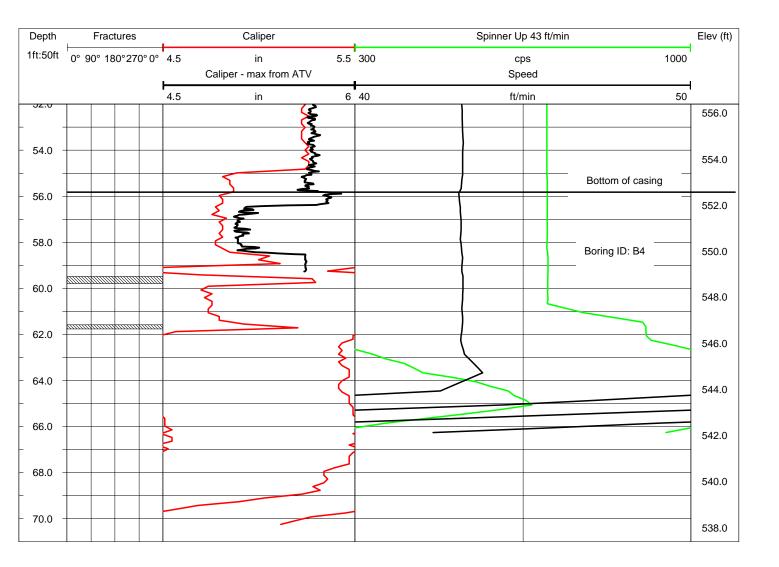




L .									
									540.0
- 68.5 -									
- 69.0 -									539.5
									_
- 69.5 -									539.0
									_
- 70.0 -									538.5
					/	 			_
- 70.5 -									538.0
						 			-
71.0									537.5

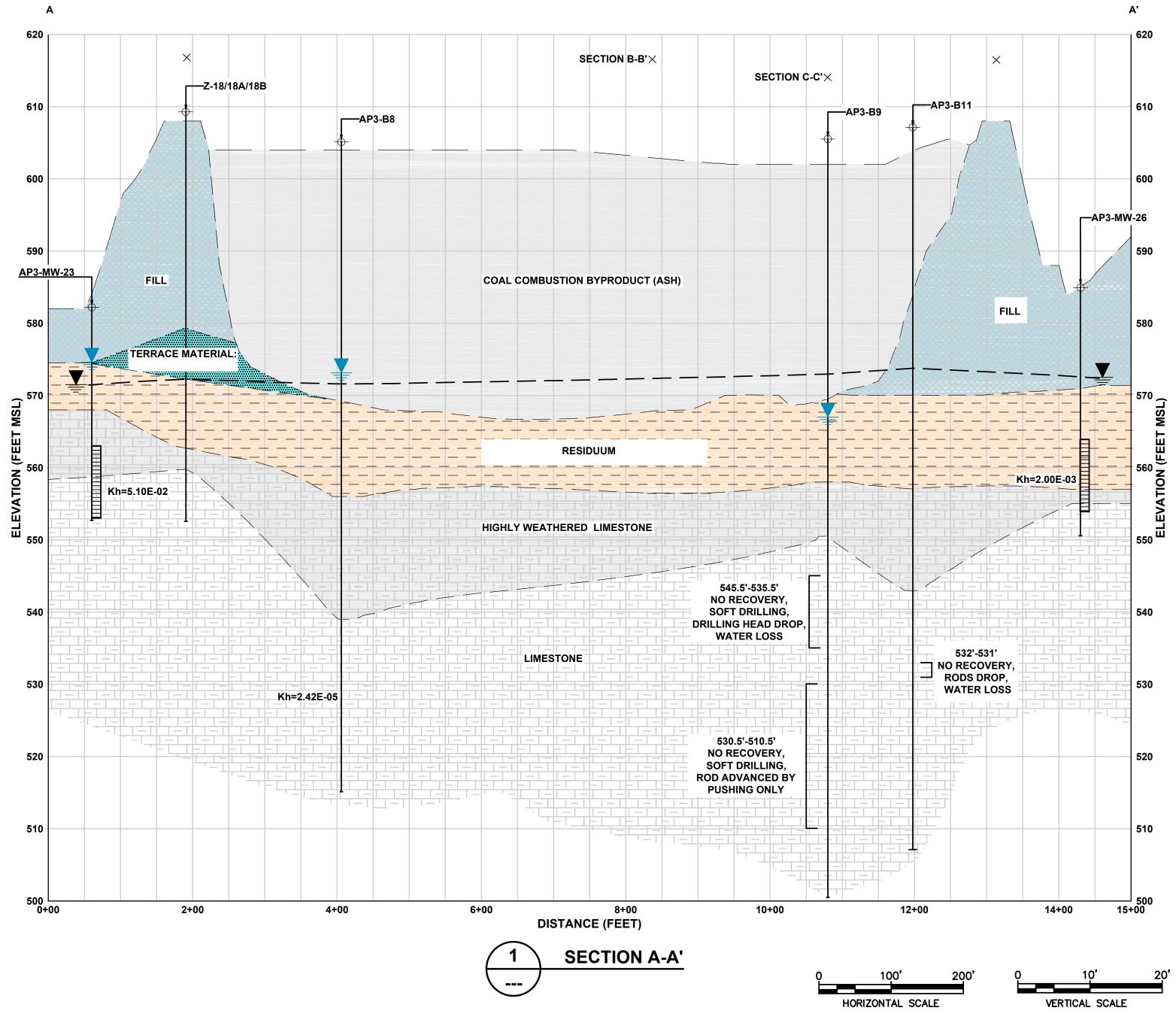



APPENDIX 2



APPENDIX 3

Depth	Fractures	Caliper	Spinner 26 ft/min	Elev (ft)
1ft:40ft	0° 90° 180°270°0°		1000 cps 1500	
		Caliper - max from ATV	Speed	
12.0		4.5 in 5.5	20 ft/min 30	
		<u>}</u>		
- 74.0 -			Boring ID: B9 Bottom of casing	532.0
- 76.0 -				530.0
				528.0


APPENDIX 4

APPENDIX D

Cross Sections Depicting Pre-Closure Conditions (Submitted with 2018 HAR)

NOTES:

LEGEND

\bot	SOIL BORING (DASHED WHERE PROJECTED)
Ţ	GROUND WATER LEVEL (9 FEBRUARY 2017)
	GROUND WATER LEVEL (INTERPRETED WATER TABLE BASED ON 1 JUNE 2015)
	SCREEN INTERVAL
SOIL LAYE	R DESCRIPTIONS
	COAL COMBUSTION BYPRODUCT (ASH)
	FILL (LEAN CLAY OR GRAVELLY LEAN CLAY WITH SAND)
	TERRACE MATERIAL (CLAYEY SAND, SANDY CLAY, GRAVELLY

 \bigotimes SILTY CLAY) , CANDI CLAI, Gr RESIDUUM (LEAN CLAY, LEAN CLAY WITH GRAVEL, FAT CLAY OR SANDY FAT CLAY) HIGHLY WEATHERED LIMESTONE (CLAYEY GRAVEL, SANDY LEAN CLAY WITH GRAVEL)

LIMESTONE

VERTICAL EXAGGERATION: 10X

1. SUBSURFACE LITHOLOGIC ELEVATIONS BETWEEN BORINGS ARE INTERPRETED BASED ON AVAILABLE INFORMATION AND SHOULD BE CONSIDERED APPROXIMATE.

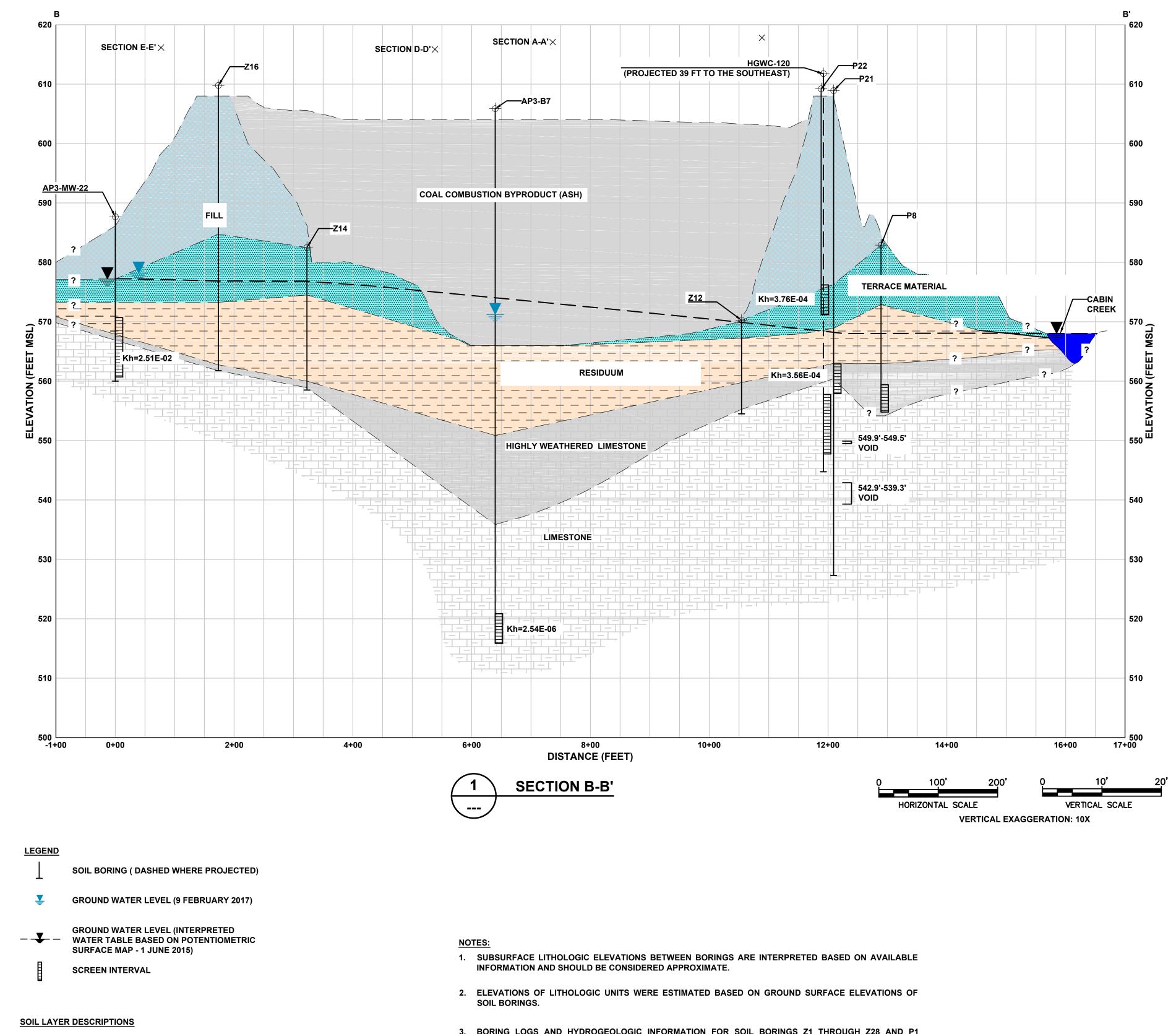
2. ELEVATIONS OF LITHOLOGIC UNITS WERE ESTIMATED BASED ON GROUND SURFACE ELEVATIONS OF SOIL BORINGS.

3. BORING LOGS AND HYDROGEOLOGIC INFORMATION FOR SOIL BORINGS Z1 THROUGH Z28 AND P1 THROUGH P24 (1976 & 1977), AP3-1, AP3-2, AND AP3-3 (2010), MONITORING WELLS AROUND ASH PONDS AP1 AND AP3 (2014), P20 AND P21 (2016) WERE PROVIDED BY SOUTHERN COMPANY SERVICES. SOIL BORINGS/PIEZOMETERS AP3-B1 THROUGH AP3-B11 WERE INSTALLED BY GEOSYNTEC CONSULTANTS IN FEBRUARY 2017.

4. HORIZONTAL HYDRAULIC CONDUCTIVITY (Kh) IN CM/SEC. VERTICAL HYDRAULIC CONDUCTIVITY (Kv) IN CM/SEC.

5. EXISTING TOPOGRAPHIC MAP USED IN THE GEOLOGIC SECTION WAS BASED ON DRAWING NUMBER ES184451 PROVIDED BY SOUTHERN COMPANY SERVICES.

KEY MAP
AP1A-1* Z-27 AP3-MW-27 AP1-MW-1 AP1-MW-2 AP3-MW-27

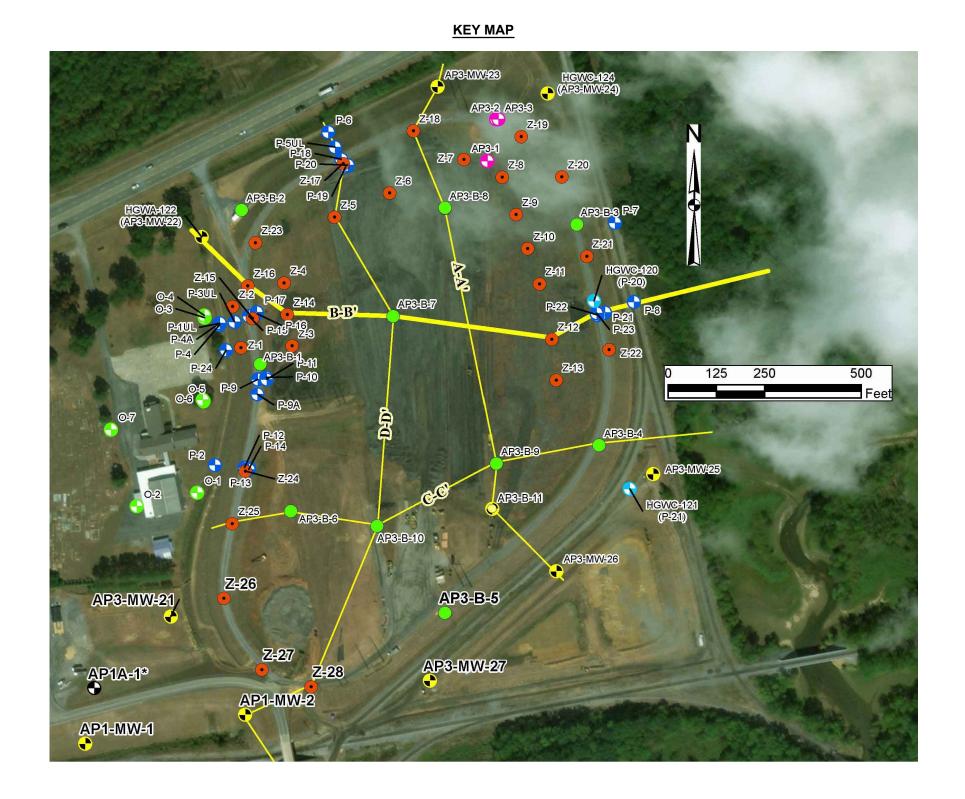

Geologic Sections A-A'
Georgia Power Company
Plant Hammond AP-3
Floyd County, Rome, Georgia

consultants Kennesaw, GA November 2018

Geosyntec

2-3A

FIGURE



	SURFACE MAP - 1 JUNE 2015)
	SCREEN INTERVAL
SOIL LAYE	R DESCRIPTIONS
	COAL COMBUSTION BYPRODUCT (ASH)
	FILL (LEAN CLAY OR GRAVELLY LEAN CLAY WITH SAND)
	TERRACE MATERIAL (CLAYEY SAND, SANDY CLAY, GRAVELLY SILTY CLAY)
	RESIDUUM (LEAN CLAY, LEAN CLAY WITH GRAVEL, FAT CLAY OR SANDY FAT CLAY)
	HIGHLY WEATHERED LIMESTONE (CLAYEY GRAVEL, SANDY LEAN CLAY WITH GRAVEL)
	LIMESTONE

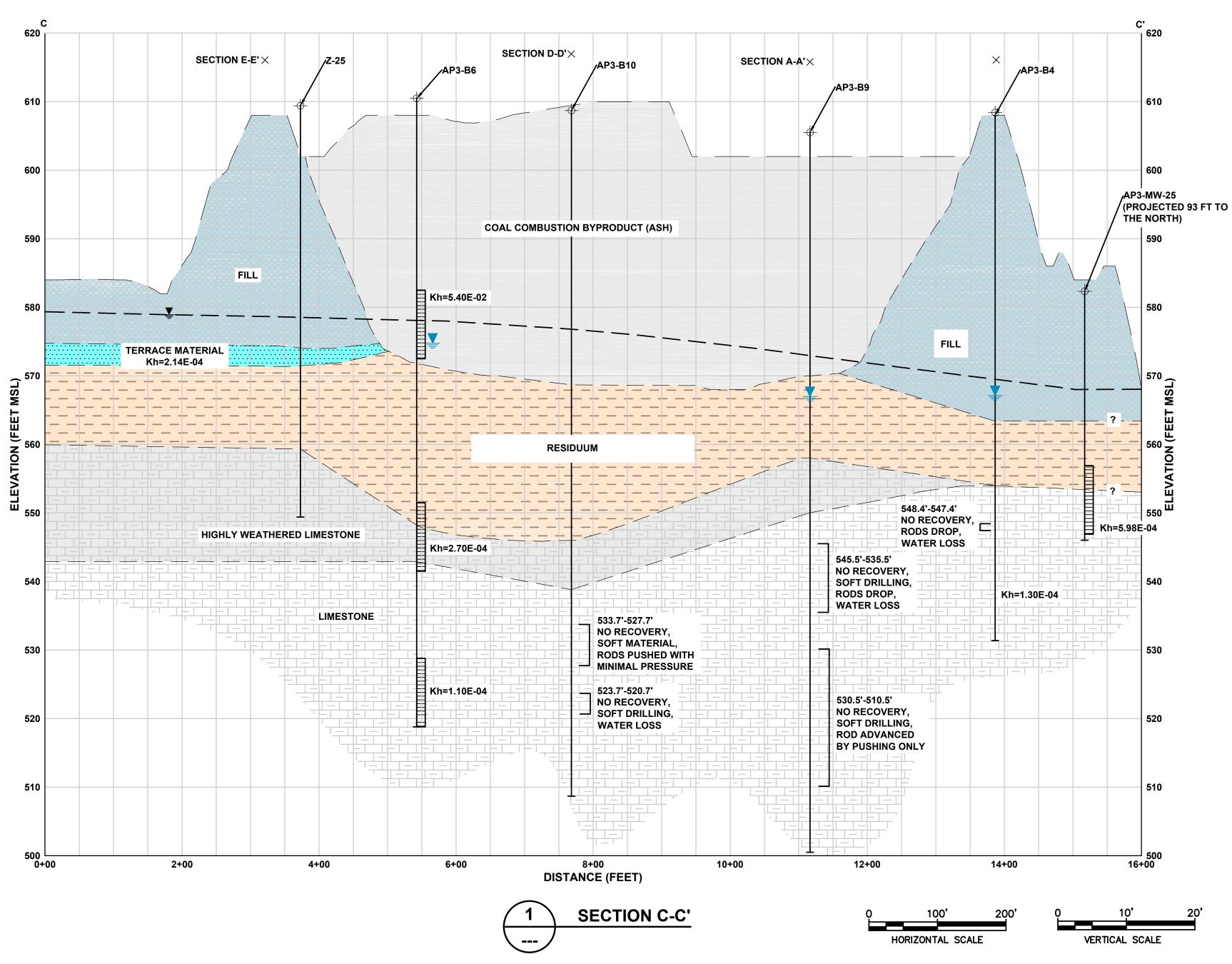
5. EXISTING TOPOGRAPHIC MAP USED IN THE GEOLOGIC SECTION WAS BASED ON DRAWING NUMBER ES1844S1 PROVIDED BY SOUTHERN COMPANY SERVICES.

4. HORIZONTAL HYDRAULIC CONDUCTIVITY (Kh) IN CM/SEC. VERTICAL HYDRAULIC CONDUCTIVITY (Kv) IN CM/SEC. Kh AND Kv VALUES PRESENTED FOR LITHOLOGIC UNITS ARE GEOMETRIC MEAN OF THE NUMBER OF MEASUREMENTS PROVIDED IN PARENTHESIS.

3. BORING LOGS AND HYDROGEOLOGIC INFORMATION FOR SOIL BORINGS Z1 THROUGH Z28 AND P1 THROUGH P24 (1976 & 1977), AP3-1, AP3-2, AND AP3-3 (2010), MONITORING WELLS AROUND ASH PONDS AP1 AND AP3 (2014), P20 AND P21 (2016) WERE PROVIDED BY SOUTHERN COMPANY SERVICES. SOIL BORINGS/PIEZOMETERS AP3-B1 THROUGH AP3-B11 WERE INSTALLED BY GEOSYNTEC CONSULTANTS IN FEBRUARY 2017.

Geologic Section B-B' Georgia Power Company Plant Hammond AP3 Floyd County, Rome, Georgia

consultants


Geosyntec^D FIGURE 2-3B

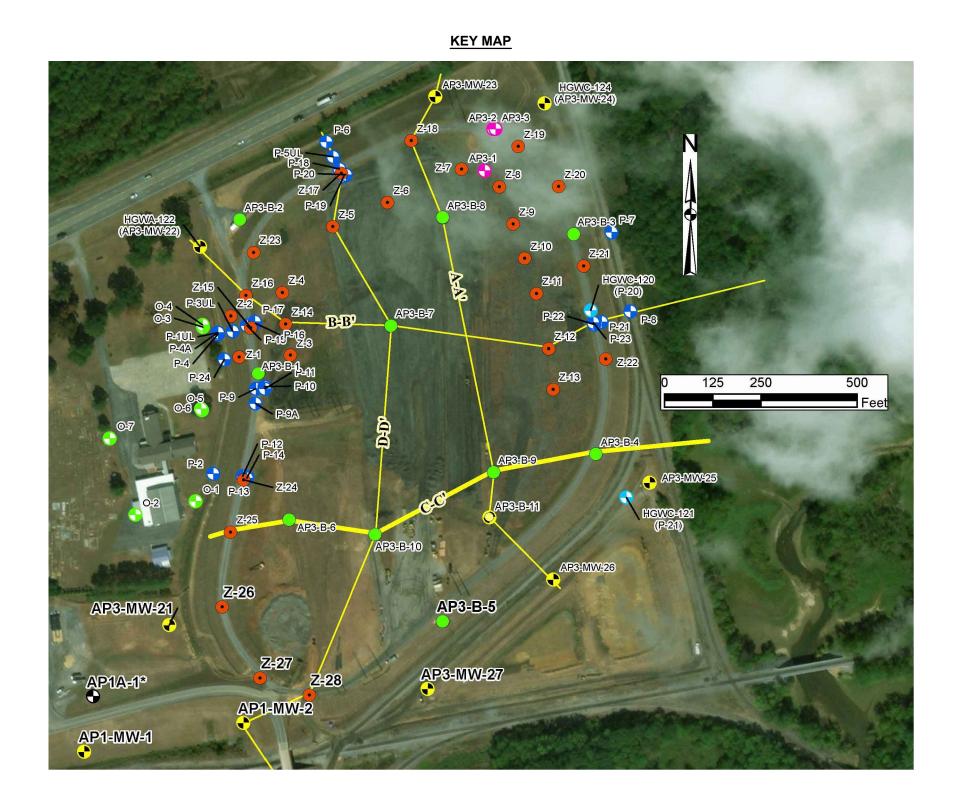
Kennesaw, GA May 2017

Ţ	GROUND WATER LEVEL (9 FEBRUARY 2017)		
	GROUND WATER LEVEL (INTERPRETED WATER TABLE BASED ON 1 JUNE 2015)	<u>NO</u>	<u>res:</u>
	SCREEN INTERVAL	1.	SUBSUR
		2.	ELEVATI SOIL BO
SOIL LAYE	R DESCRIPTIONS		
	COAL COMBUSTION BYPRODUCT (ASH)	3.	BORING THROUG AP1 ANI
	FILL (LEAN CLAY OR GRAVELLY LEAN CLAY WITH SAND)		BORINGS FEBRUA
	TERRACE MATERIAL (CLAYEY SAND, SANDY CLAY, GRAVELLY SILTY CLAY)	4.	HORIZON CM/SEC.
	RESIDUUM (LEAN CLAY, LEAN CLAY WITH GRAVEL, FAT CLAY OR SANDY FAT CLAY)	5.	EXISTING
	HIGHLY WEATHERED LIMESTONE (CLAYEY GRAVEL, SANDY LEAN CLAY WITH GRAVEL)		
	LIMESTONE		

SOIL BORING (DASHED WHERE PROJECTED)

LEGEND

ATION AND SHOULD BE CONSIDERED AFFROXIMATE.

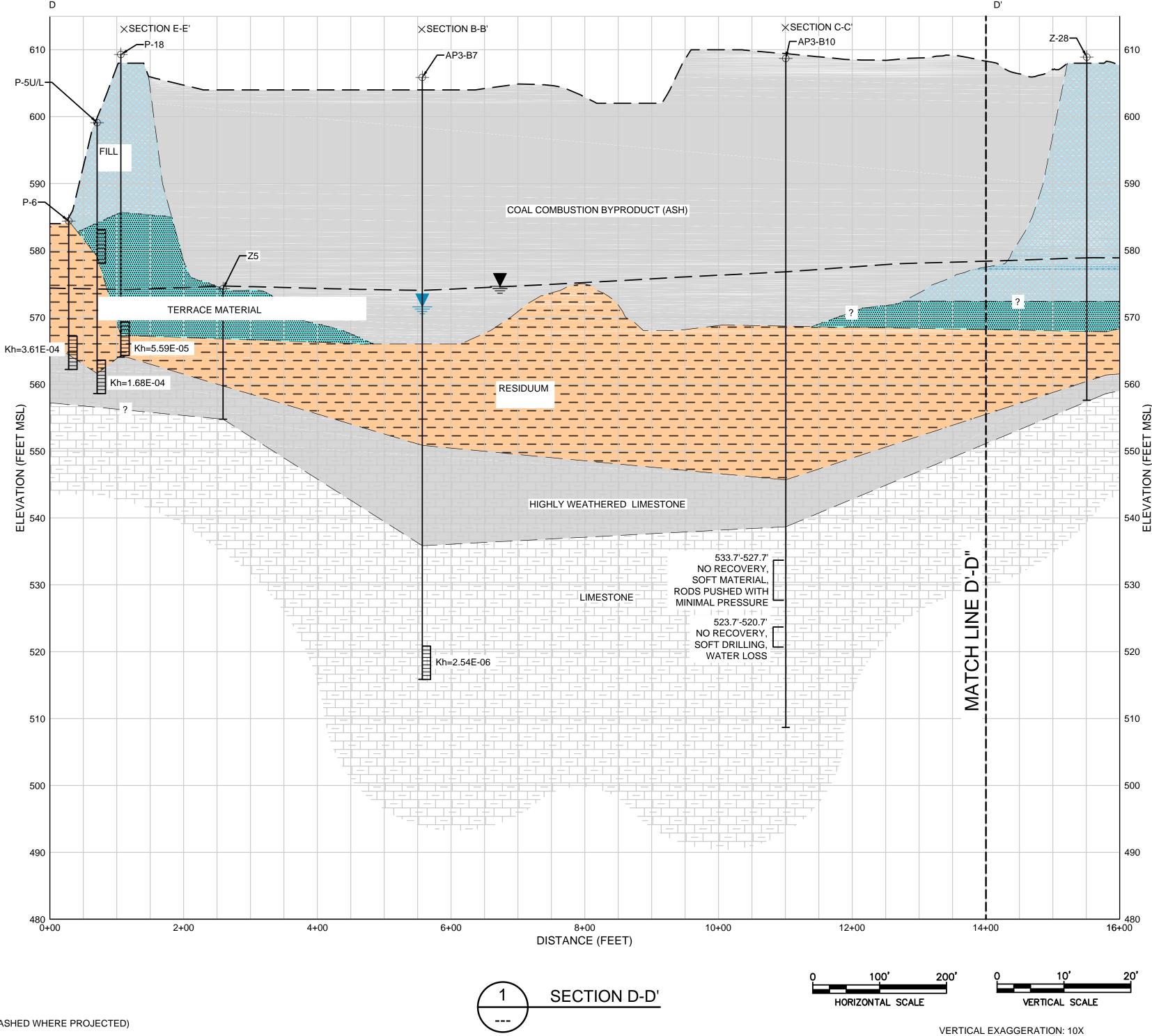

URFACE LITHOLOGIC ELEVATIONS BETWEEN BORINGS ARE INTERPRETED BASED ON AVAILABLE RMATION AND SHOULD BE CONSIDERED APPROXIMATE.

ATIONS OF LITHOLOGIC UNITS WERE ESTIMATED BASED ON GROUND SURFACE ELEVATIONS OF BORINGS.

NG LOGS AND HYDROGEOLOGIC INFORMATION FOR SOIL BORINGS Z1 THROUGH Z28 AND P1 DUGH P24 (1976 & 1977), AP3-1, AP3-2, AND AP3-3 (2010), MONITORING WELLS AROUND ASH PONDS AND AP3 (2014), P20 AND P21 (2016) WERE PROVIDED BY SOUTHERN COMPANY SERVICES. SOIL NGS/PIEZOMETERS AP3-B1 THROUGH AP3-B11 WERE INSTALLED BY GEOSYNTEC CONSULTANTS IN UARY 2017.

ZONTAL HYDRAULIC CONDUCTIVITY (Kh) IN CM/SEC. VERTICAL HYDRAULIC CONDUCTIVITY (Kv) IN EC.

TING TOPOGRAPHIC MAP USED IN THE GEOLOGIC SECTION WAS BASED ON DRAWING NUMBER 4451 PROVIDED BY SOUTHERN COMPANY SERVICES. VERTICAL EXAGGERATION: 10X



Geologic Sections C-C'
Georgia Power Company
Plant Hammond AP3
Floyd County, Rome, Georgia

Geosyntec[▶]

Kennesaw, GA March 2017

consultants

LEGEND

SOIL BORING (DASHED WHERE PROJECTED)

SURFACE MAP - 1 JUNE 2015)

SCREEN INTERVAL

SOIL LAYER DESCRIPTIONS

LIMESTONE

GROUND WATER LEVEL (INTERPRETED — — — WATER TABLE BASED ON POTENTIOMETRIC

COAL COMBUSTION BYPRODUCT (ASH)

LEAN CLAY WITH GRAVEL)

FILL (LEAN CLAY OR GRAVELLY LEAN CLAY WITH SAND)

RESIDUUM (LEAN CLAY, LEAN CLAY WITH GRAVEL, FAT CLAY OR SANDY FAT CLAY)

TERRACE MATERIAL (CLAYEY SAND, SANDY CLAY, GRAVELLY SILTY CLAY)

HIGHLY WEATHERED LIMESTONE (CLAYEY GRAVEL, SANDY

GROUND WATER LEVEL (9 FEBRUARY 2017)

1. SUBSURFACE LITHOLOGIC ELEVATIONS BETWEEN BORINGS ARE INTERPRETED BASED ON AVAILABLE INFORMATION AND SHOULD BE CONSIDERED APPROXIMATE.

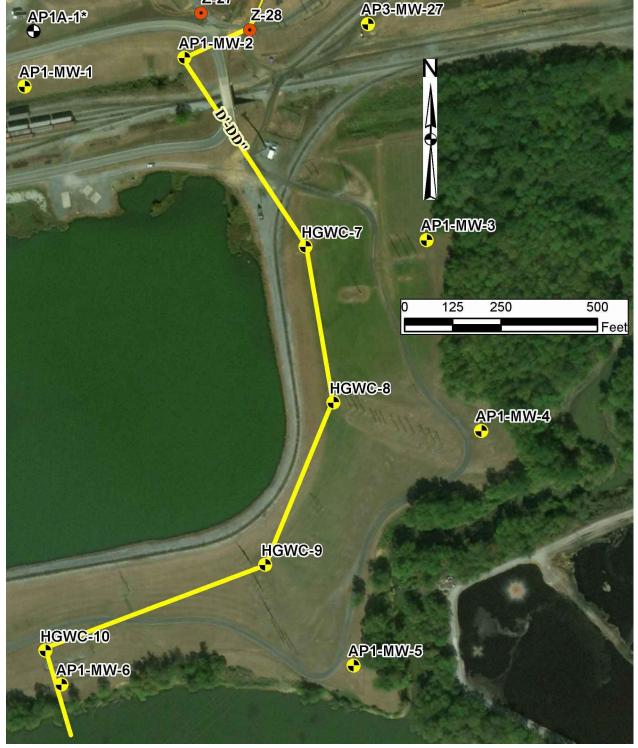
NOTES:

2. ELEVATIONS OF LITHOLOGIC UNITS WERE ESTIMATED BASED ON GROUND SURFACE ELEVATIONS OF SOIL BORINGS.

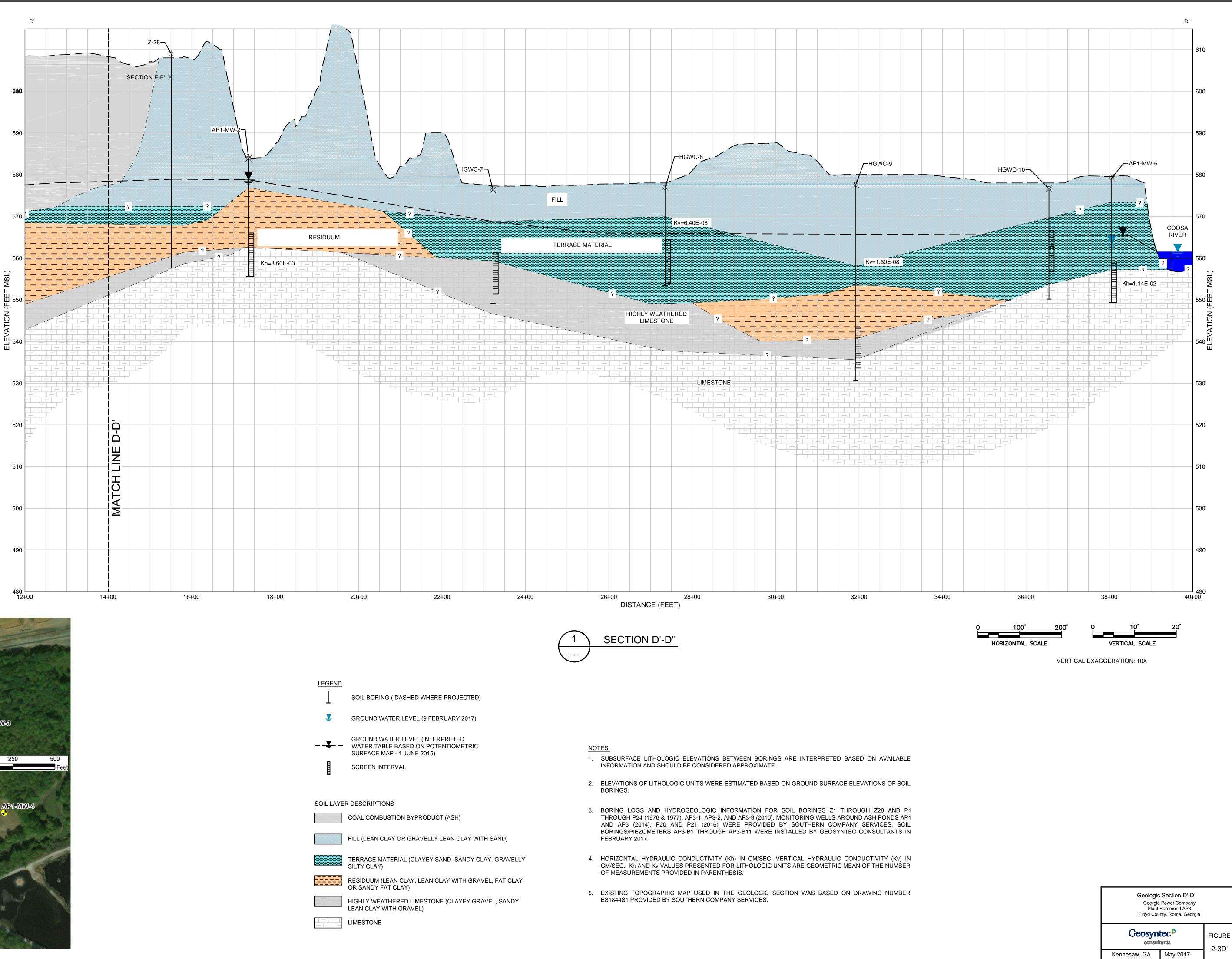
3. BORING LOGS AND HYDROGEOLOGIC INFORMATION FOR SOIL BORINGS Z1 THROUGH Z28 AND P1 THROUGH P24 (1976 & 1977), AP3-1, AP3-2, AND AP3-3 (2010), MONITORING WELLS AROUND ASH PONDS AP1 AND AP3 (2014), P20 AND P21 (2016) WERE PROVIDED BY SOUTHERN COMPANY SERVICES. SOIL BORINGS/PIEZOMETERS AP3-B1 THROUGH AP3-B11 WERE INSTALLED BY GEOSYNTEC CONSULTANTS IN FEBRUARY 2017.

4. HORIZONTAL HYDRAULIC CONDUCTIVITY (Kh) IN CM/SEC. VERTICAL HYDRAULIC CONDUCTIVITY (Kv) IN CM/SEC. Kh AND Kv VALUES PRESENTED FOR LITHOLOGIC UNITS ARE GEOMETRIC MEAN OF THE NUMBER OF MEASUREMENTS PROVIDED IN PARENTHESIS.

5. EXISTING TOPOGRAPHIC MAP USED IN THE GEOLOGIC SECTION WAS BASED ON DRAWING NUMBER ES1844S1 PROVIDED BY SOUTHERN COMPANY SERVICES.


APS-MW	⁴ 23 HGWQ-124) ← (AP3-MW-24)
	3-2 AP3-3
	Z ²⁴¹⁹ N
P-511 P-418 P-20 747 747 747 747 747	
AP3-B-2 P-19 AP3-B-2 AP3-B-2	
HGWA-122 (AFS-MW-22) Z+23	
	Z-10 Z-21
Z415 Z-16 Z-4	Z-11 HEWO-120 (P-20)
0-4 P-6UL 242 P-17 2-14 B-B AP3-B-7	B22
P-1UL P-19-16 P-4A 2-1	Z-12 P-23
P-4 AP3-B-1-411	Z=13 0 125 250 500
	• 500 Feet
©7	
	AF3-B-9
P-114 P-13 Z-24	▲ AF3-MW425
703	AP3-B-11 (F-21)
AP3-B-6	
	AP3-MW-26
Z=26 AP3-MW-21/ • AP3-B	
	1///
Z-27	1/2 1 1 Bland and
AP1A-1* • Z-28 AP3-MW	-27
AP1-MW-2	Ship at the second
AP1-MW-1	CALLER AND A LONG AND

KEY MAP


Geologic Section D-D'	
Georgia Power Company	
Plant Hammond AP3	
Floyd County, Rome, Georgia	

Geosyntec consultants Kennesaw, GA May 2017

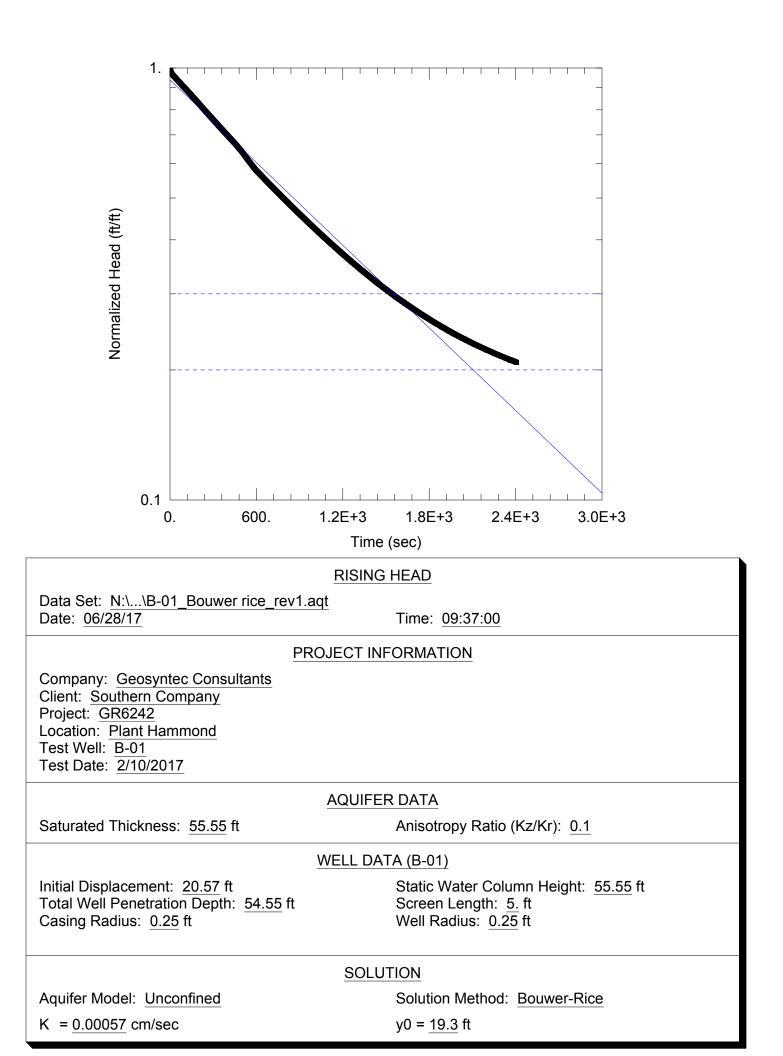
FIGURE 2-3D

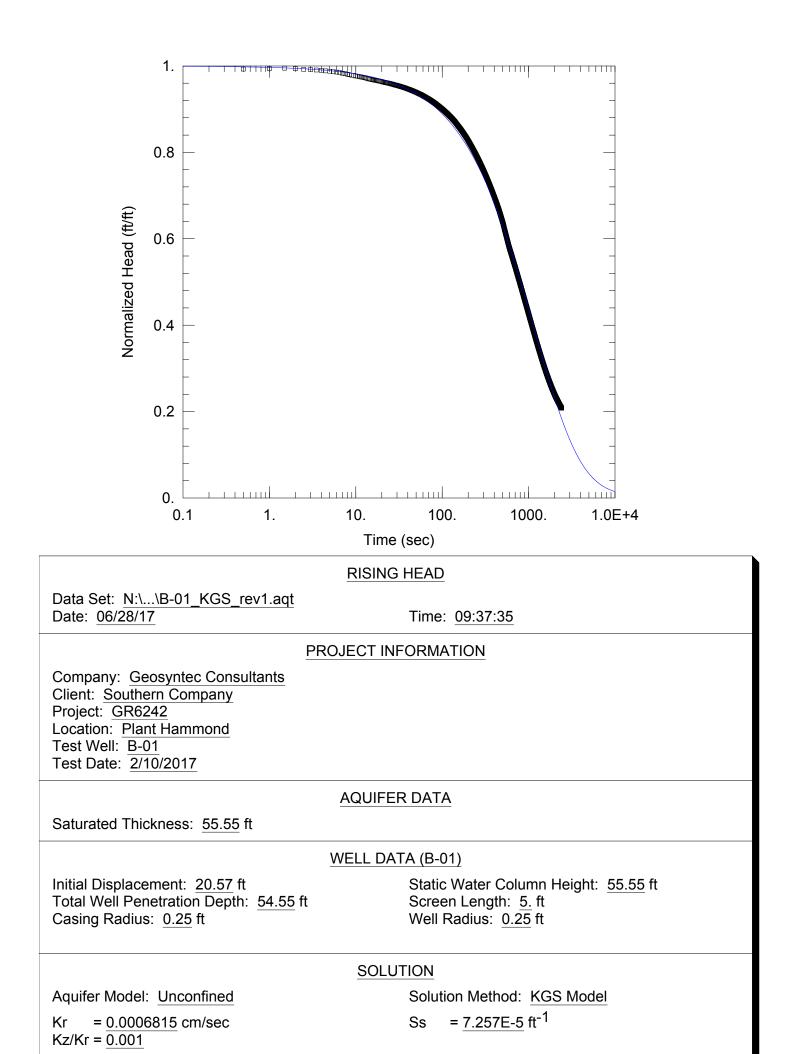
KEY MAP

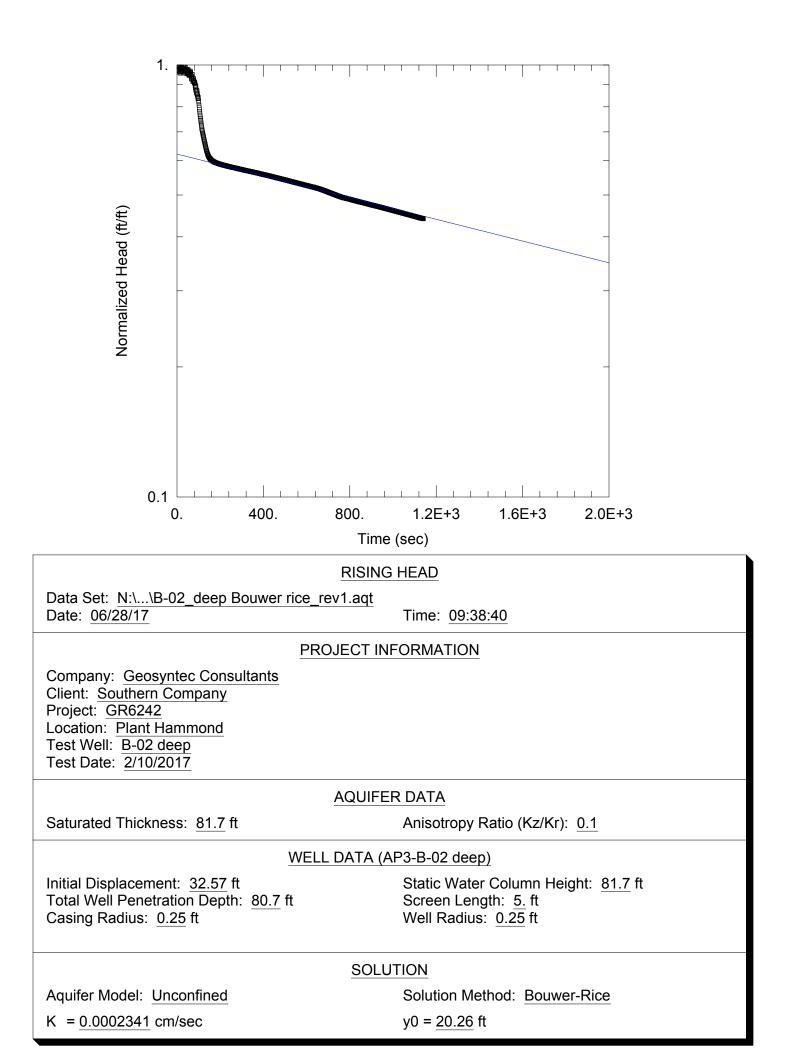
APPENDIX E

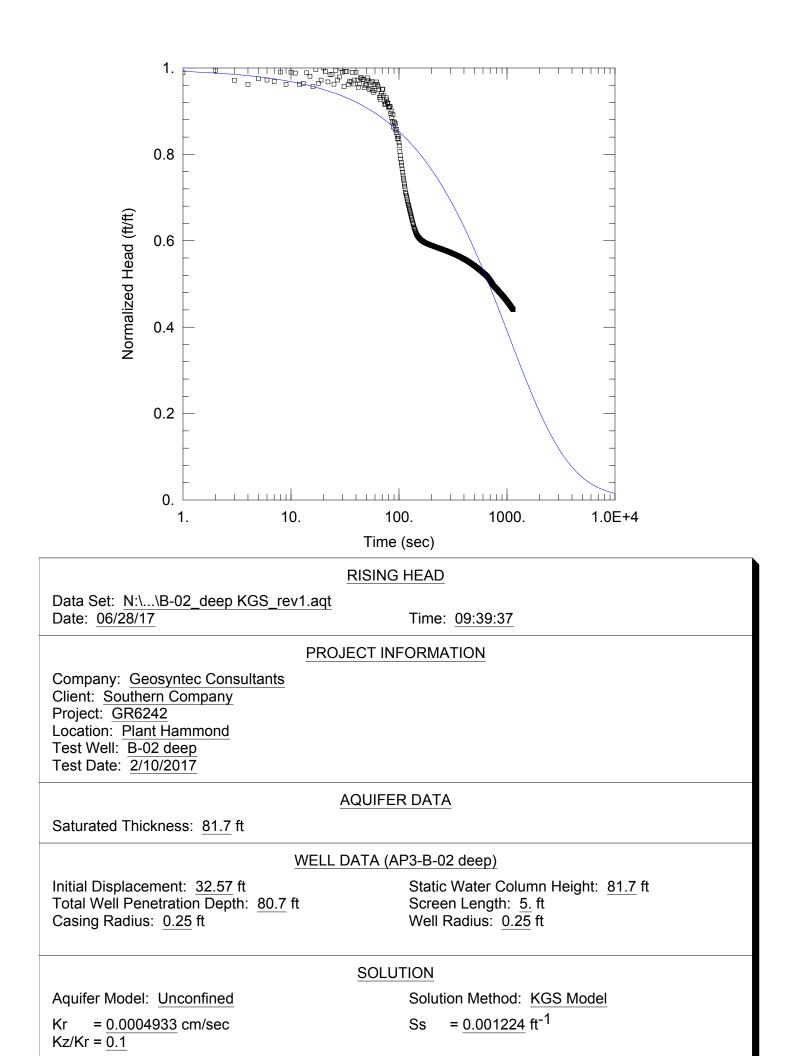
Hydraulic Conductivity Testing Results

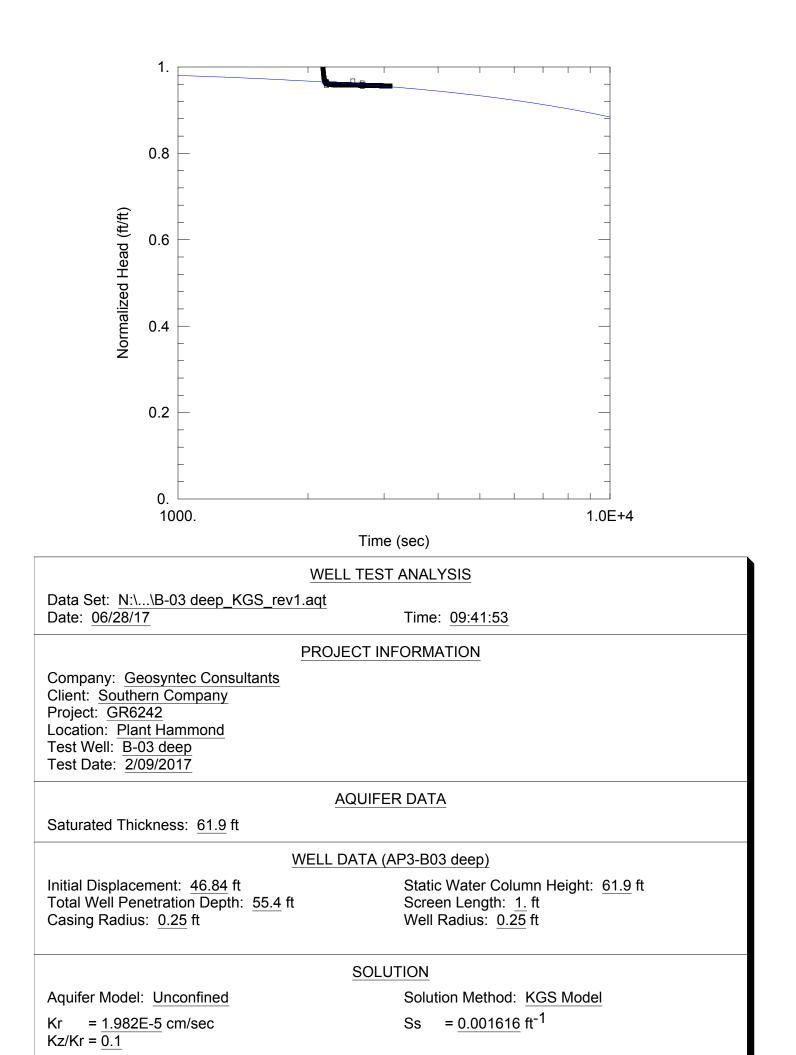
Summary Table of Slug Tests Performed at Plant Hammond AP-3 as Part of Geosyntec (2017) Field Investigation

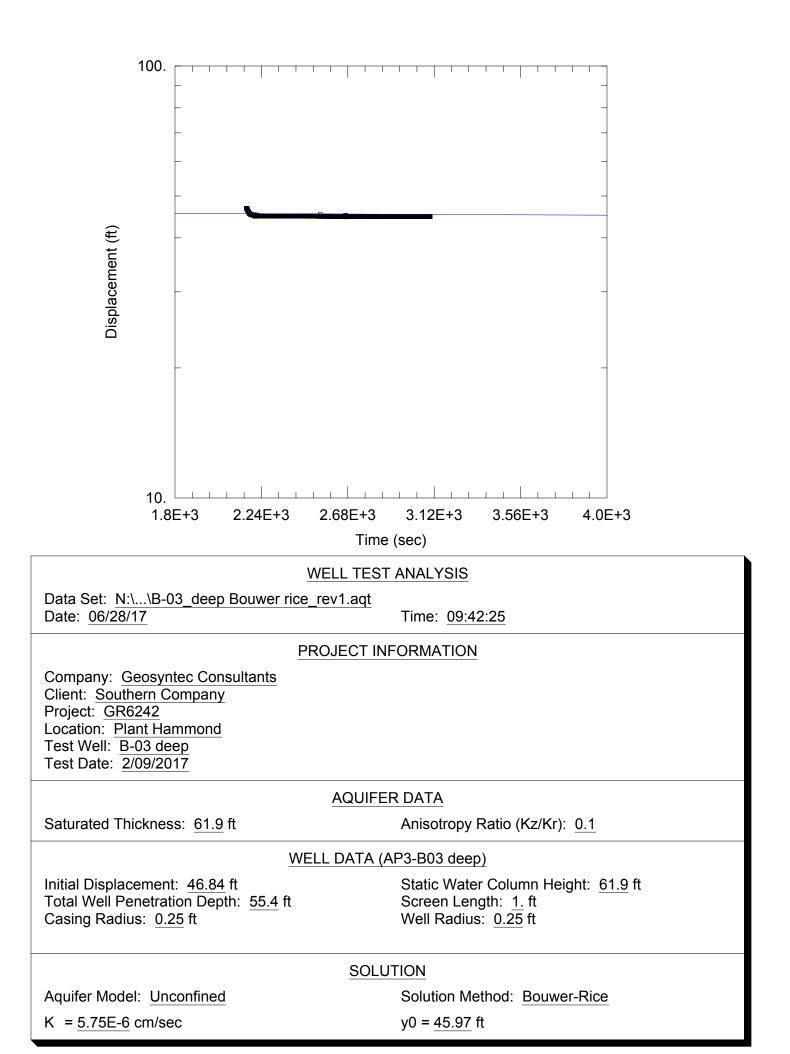

	Well Information														QTESOL	/ Input P	arameters	5	Hydraulic Conductivity (K) Estimates								
Well ID	Packer Test*	Slug Test**	Stickup length [ft]	Depth to Sensor [ft bgs]	Static DTW [ft btoc]	DTW after Pumping [ft btoc]	Top Screen	Bottom Screen Depth [ft bgs]	•	Ho [ft]	H [ft]	b [ft]	Kv/Kh	d [ft]	L [ft]	T [ft]	r(c) [ft]	r(eq) [ft]	r(p) [ft]	r(w) [ft]	r(sk) [ft]	Bouwer-Rice K [ft/day]	Bouwer-Rice K [cm/sec]	KGS K [ft/day]	KGS K [cm/sec]	GEOMEAN	
AP3-B1	NA		4	79	30.45	51.01	76.0	81.0	82.0	20.56	55.55	55.55	0.1	49.55	5.0	0.00	0.25	0	0.25	0.25	0.25	1.6	5.7E-04	1.9	6.8E-04	6.2E-04	
AP3-B2	Deep		4	101	27.30	60.64	99.0	104.0	105.0	33.344	81.7	81.70	0.1	75.70	5.0	0.00	0.25	0	0.25	0.25	0.25	0.7	2.3E-04	1.4	4.9E-04	3.4E-04	
AP3-B2	Shallow		4	47	28.90	30.86	45.0	50.0	105.0	0.586	80.1	80.10	0.1	20.10	5.0	0.00	0.25	0	0.25	0.25	0.25	Insufficient Data for Analysis					
AP3-B3	Deep		4	101	48.10	94.94	98.5	103.5	106.0	46.838	61.9	61.90	0.1	54.40	5.0	0.00	0.25	0	0.25	0.25	0.25	Insufficient Data for Analysis					
AP3-B3	Shallow		4	59	48.65	50.62	60.0	65.0	106.0	1.969	61.35	61.35	0.1	15.35	5.0	0.00	0.25	0	0.25	0.25	0.25	7.8	2.8E-03	8.7	3.1E-03	2.9E-03	
AP3-B4	NA		4	55	45.40	45.67	53.5	58.5	60.5	0.265	19.1	19.10	0.1	12.10	5.0	0.00	0.25	0	0.25	0.25	0.25	2.6	9.2E-04	4.2	1.5E-03	1.2E-03	
AP3-B5	NA		4	66	38.85	42.45	64.0	69.0	71.0	3.601	36.15	36.15	0.1	29.15	5.0	0.00	0.25	0	0.25	0.25	0.25	2.0	7.0E-04	2.9	1.0E-03	8.5E-04	
AP3-B6S		Shallow	3.56	-	37.15	37.52	25.0	35.0	35.0	0.371	1.41	1.41	0.1	0.00	10.0	0.00	0.083	0	0	0.083	0.25	102.2	4.1E-02	52.4	1.8E-02	2.8E-02	
AP3-B6I		Intermediate	0	-	35.78	38.81	59.0	69.0	69.0	3.025	33.22	33.22	0.1	23.22	10.0	0.00	0.083	0	0	0.083	0.25	0.3	9.7E-05	0.3	1.1E-04	1.0E-04	
AP3-B6D		Deep	0	-	34.89	35.89	79.0	89.0	89.0	0.728	54.11	54.11	0.1	44.11	10.0	0.00	0.083	0	0	0.083	0.25	0.2	6.2E-05	0.1	4.0E-05	5.0E-05	
AP3-B7	NA		0	86	34.30	88.99	85.0	90.0	90.0	54.693	55.7	55.70	0.1	50.70	5.0	0.00	0.25	0	0.25	0.25	0.25	Insufficient Data for Analysis					
AP3-B8	NA		2	84	31.17	77.70	83.0	88.0	89.0	46.53	59.83	59.83	0.1	53.83	5.0	0.00	0.25	0	0.25	0.25	0.25	1.5	5.2E-04	1.4	4.9E-04	5.0E-04	

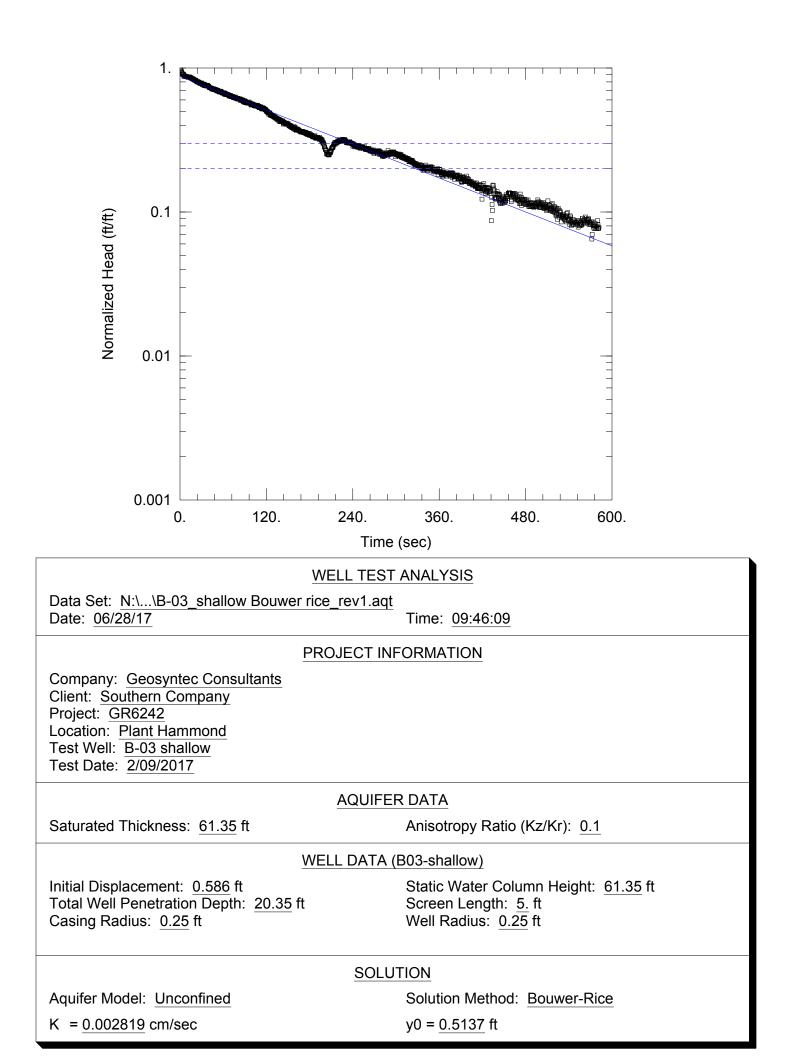

- Но Observed initial displacement (change in water level from static)
- Static water column height н
- Saturated thickness of aquifer b
- Kv/Kh Ratio of vertical to horizontal hydraulic conductivity
- d Depth to top of well screen - this is the length from the water level (or top confining unit) to the top of the screen.
- Length of well screen L
- т Transducer Depth - Note: only used by the Butler-Zahn (2004) & McElwee-Zenner solution. If using Bower-Rice or other solution methods, set to zero
- r(c) Inside radius of well casing
- r(eq) Radius of downhole equipment
- r(p) Inside radius of packer
- r(w) Radius of well open or perforated interval
- r(sk) Outside radius of well skin distrubed zone enveloping filter pack
- * Packer testing was conducted in a 6" diameter open hole
- ** Slug testing was conducted in 2" PVC casing installed i n a 6" borehole.
- ۸ Dagan Method for partially submerged screen

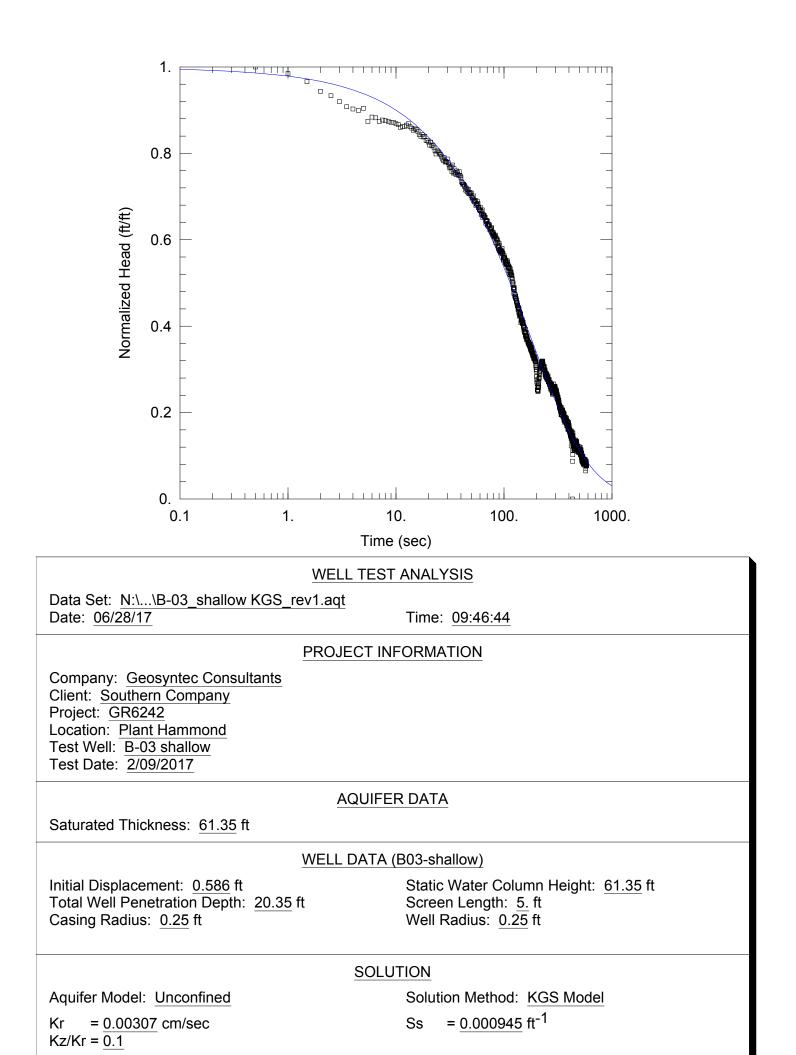

Note:

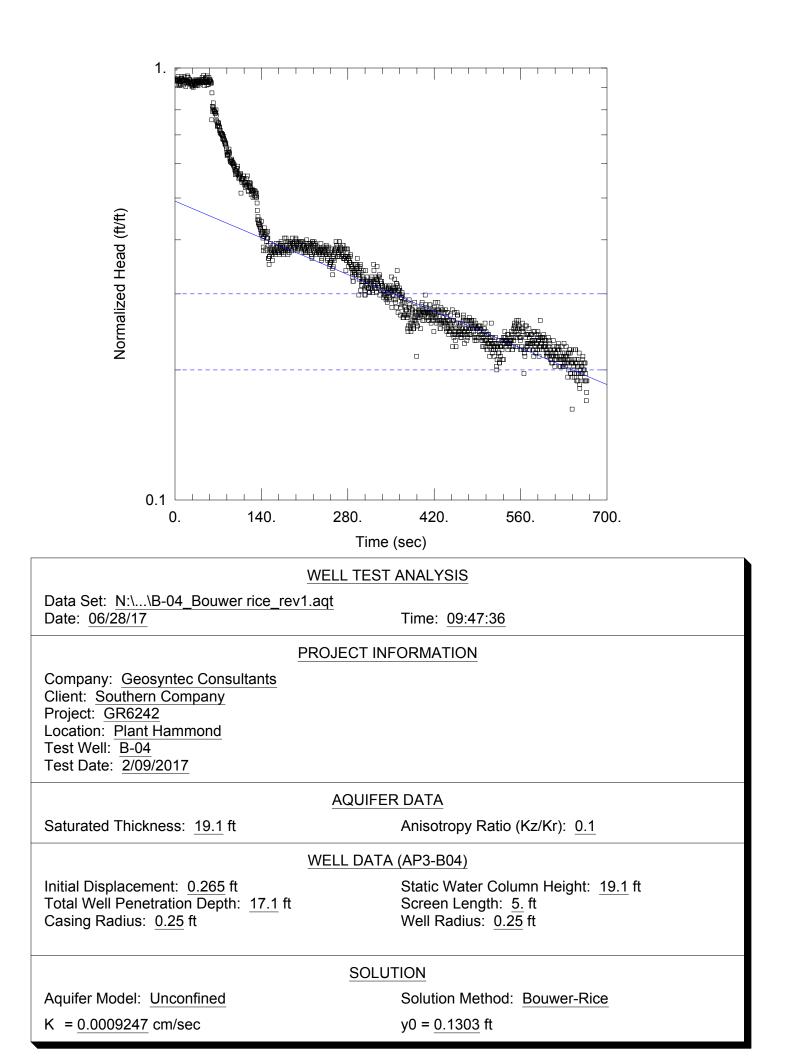

1. For b assume that bottom of well is bottom of aquifer if bottom of aquifer is not known

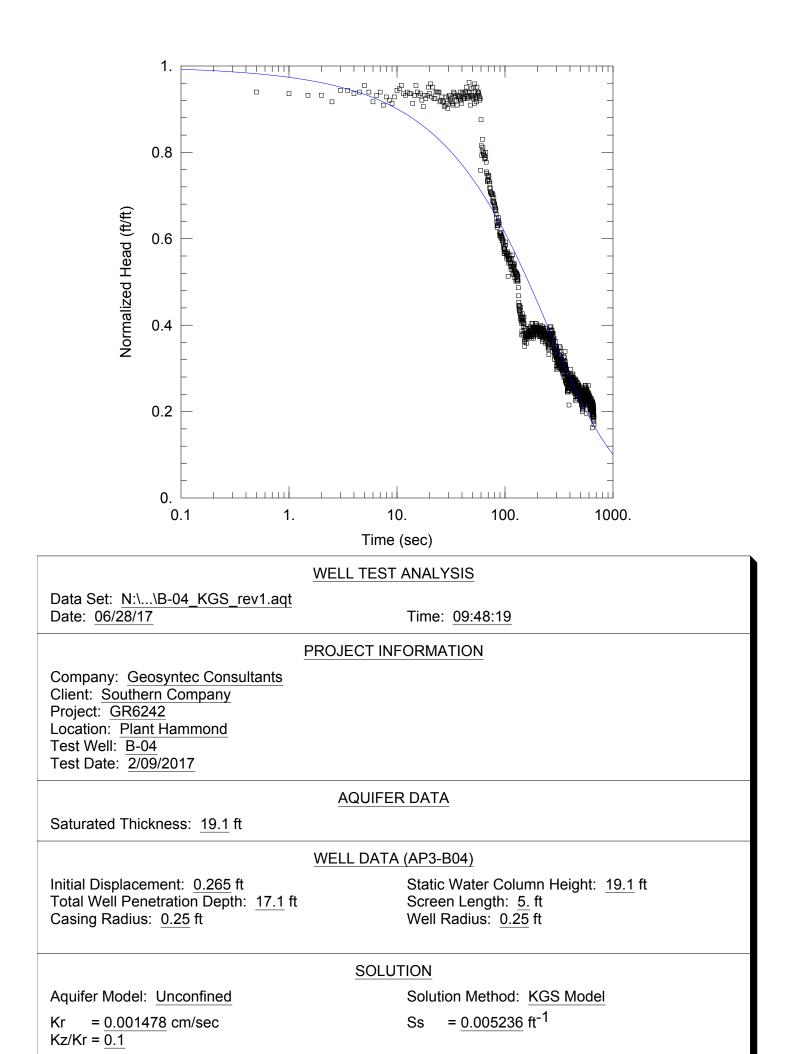

2. Dagan method applied to AP3-B6S where water level is within screen interval

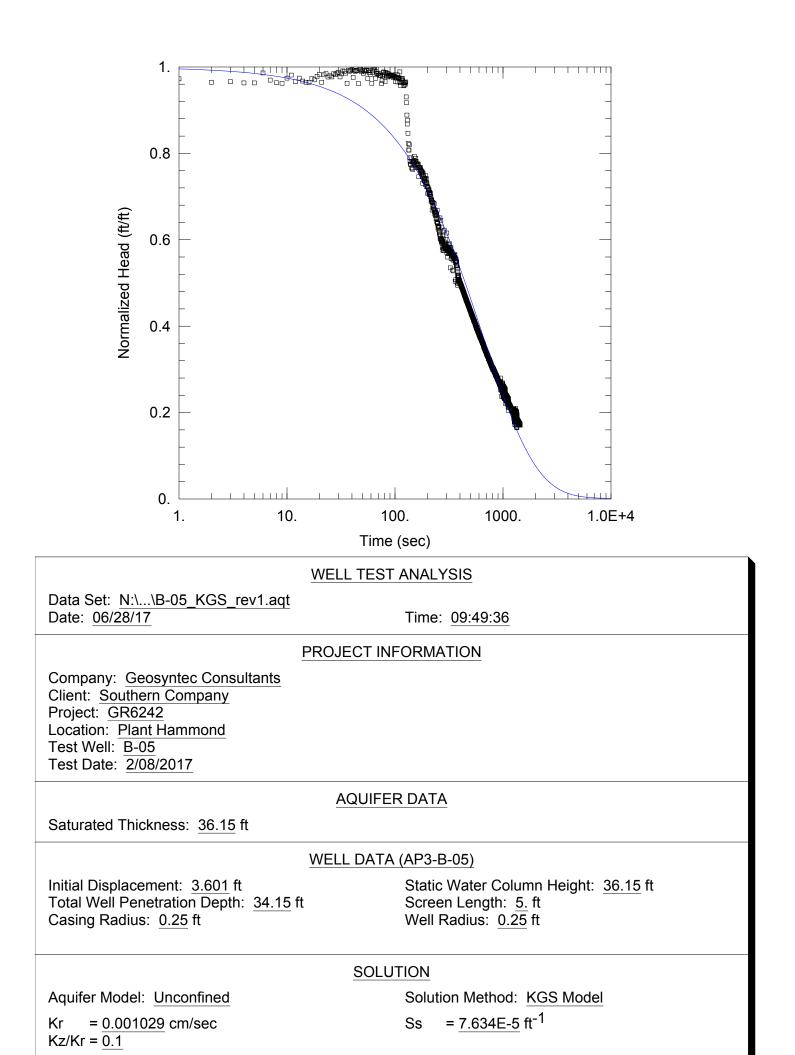


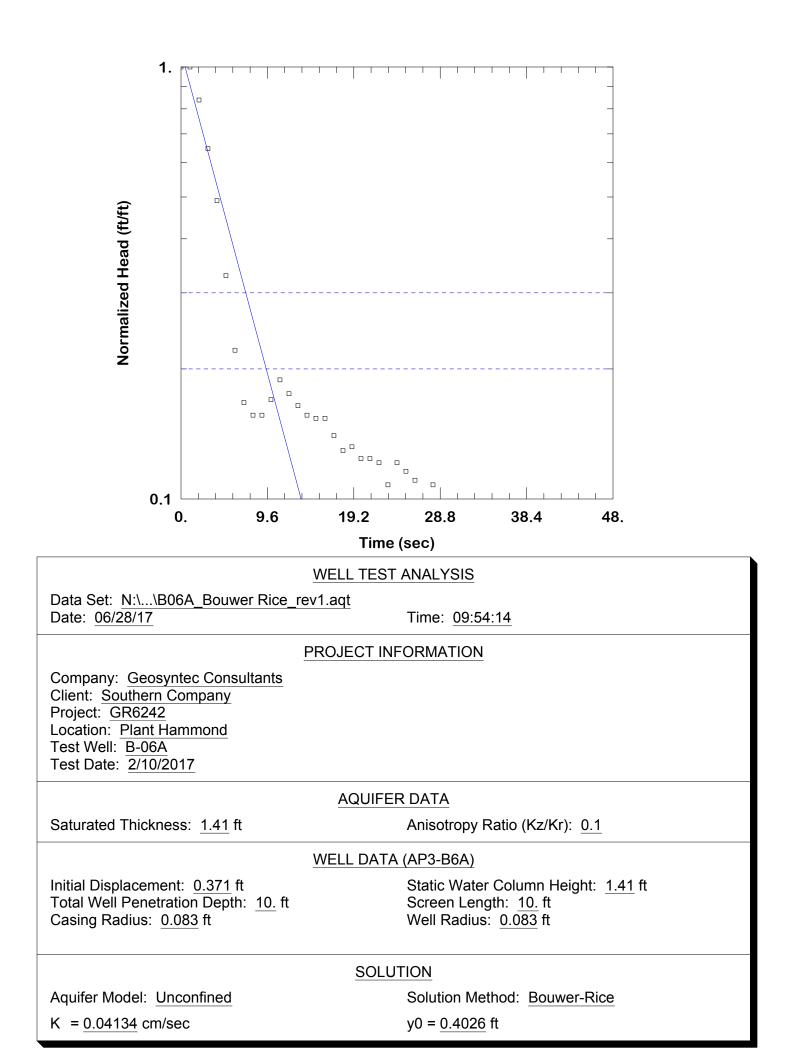


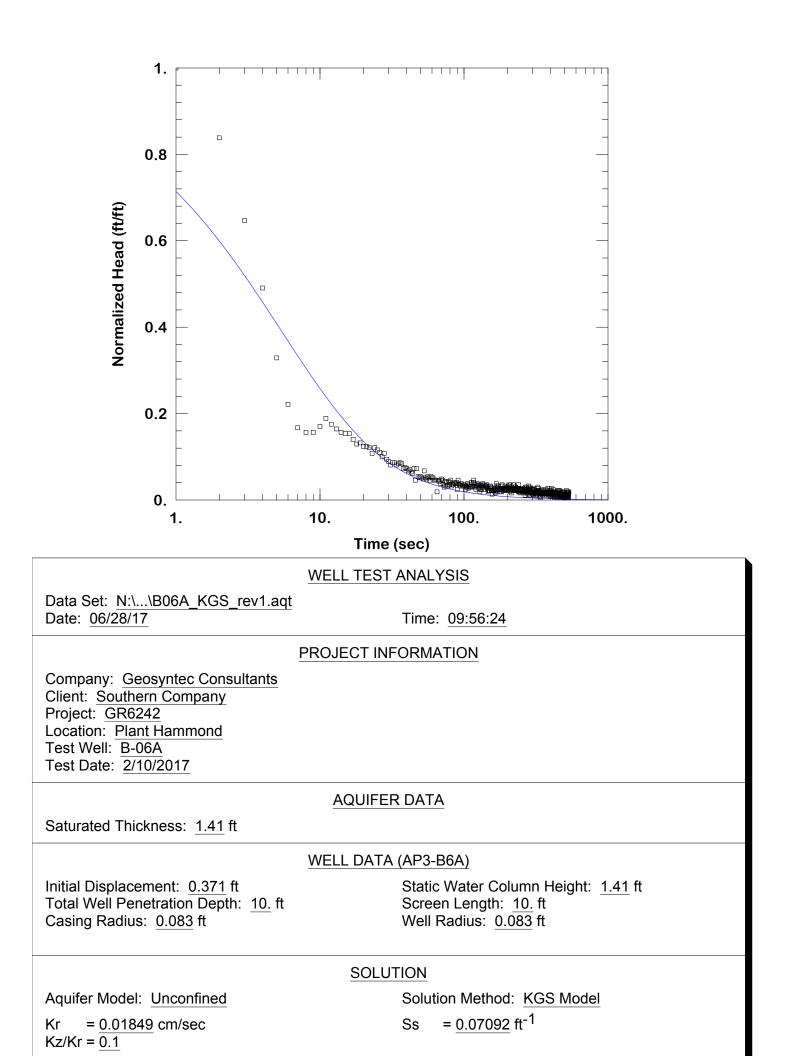


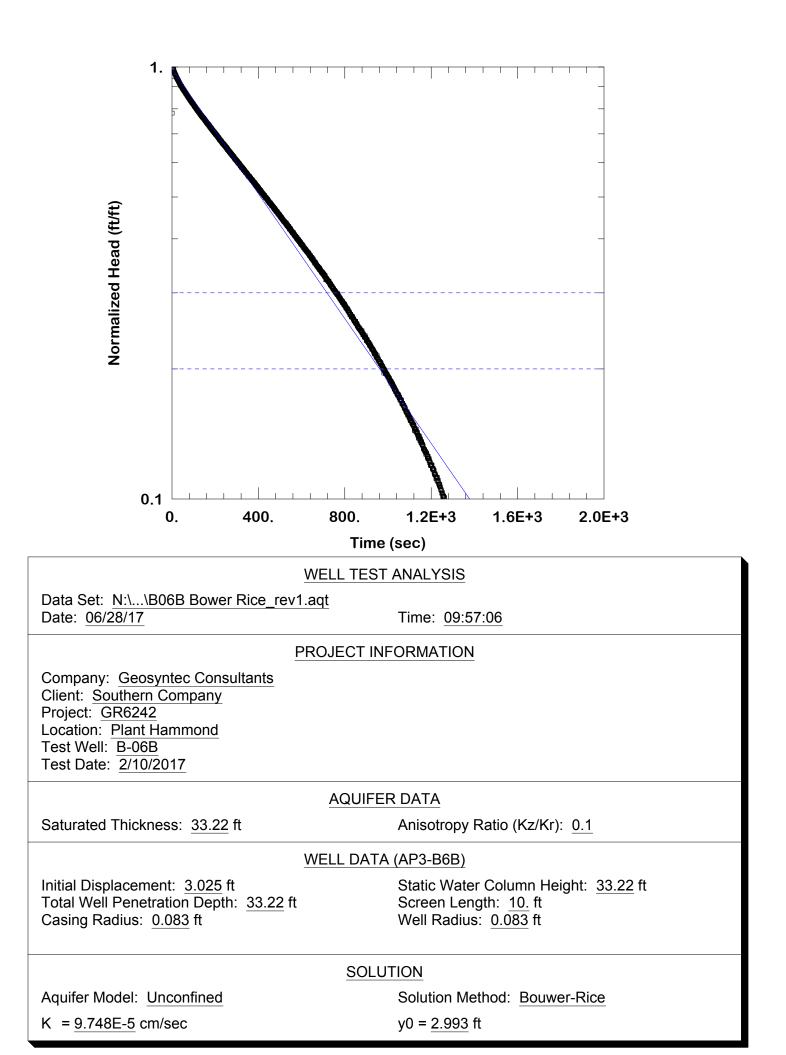


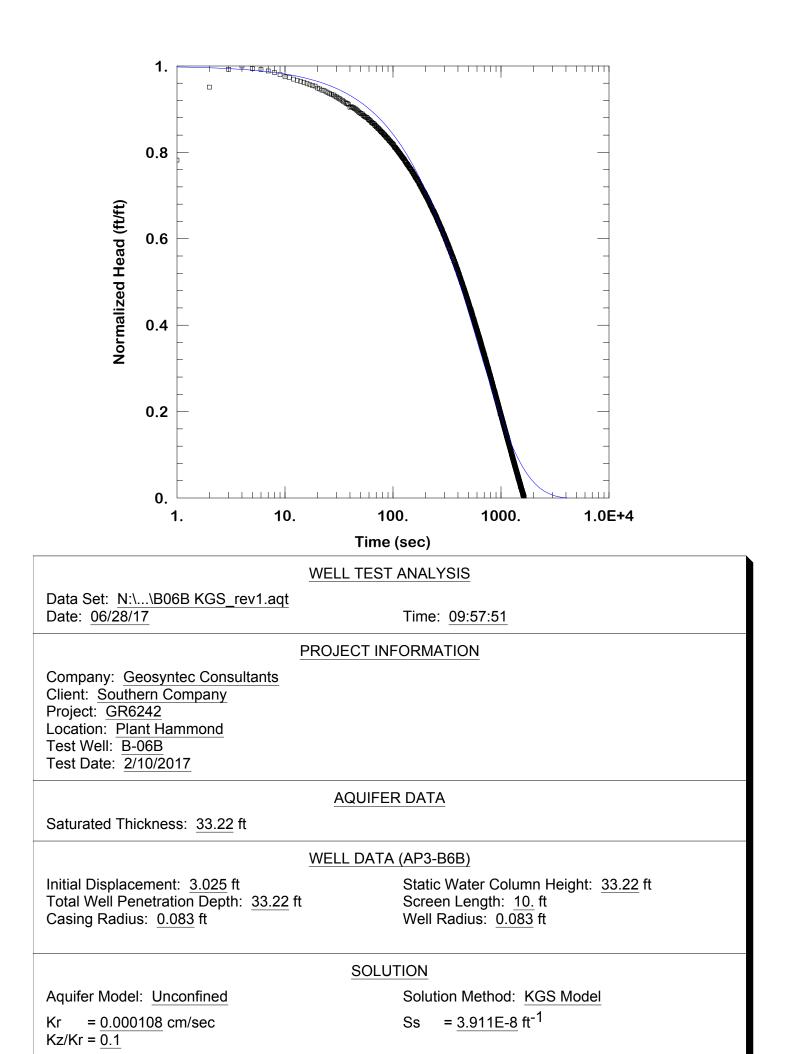


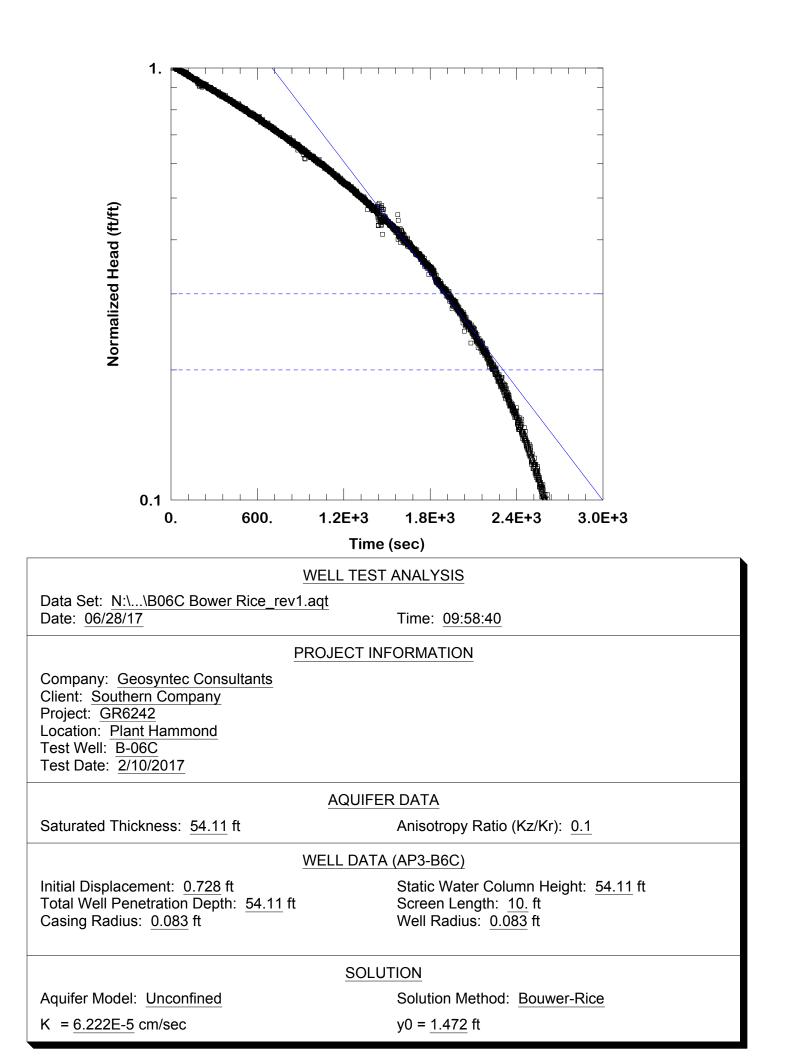


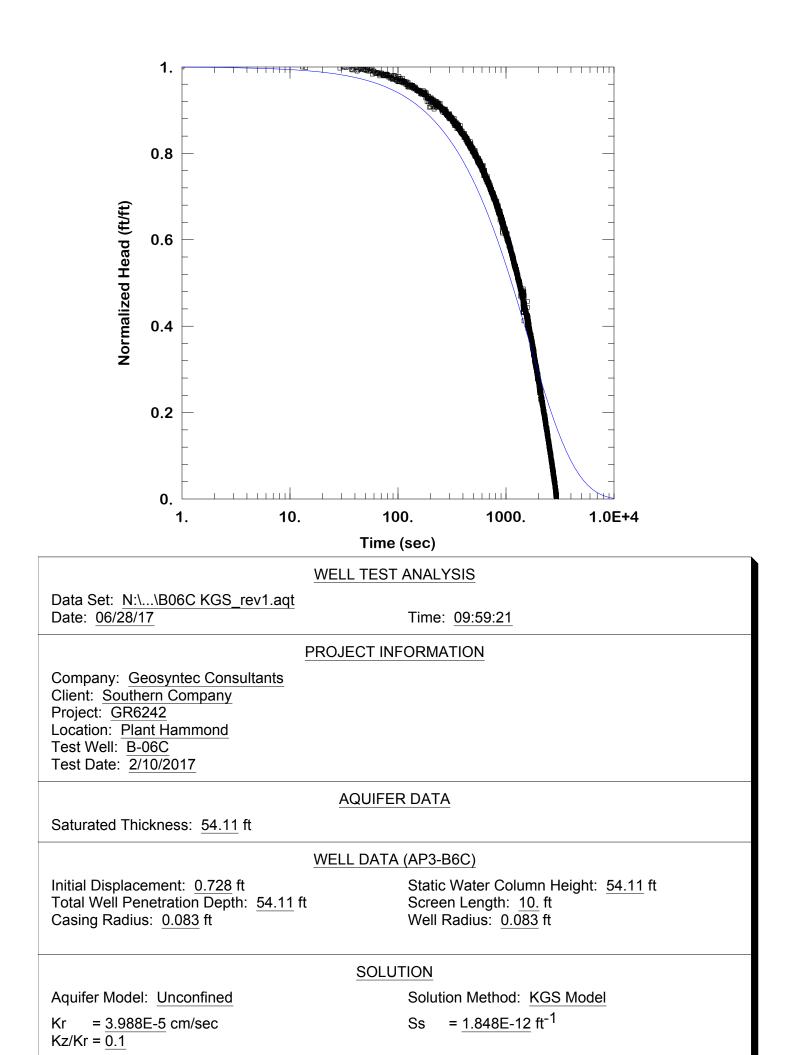


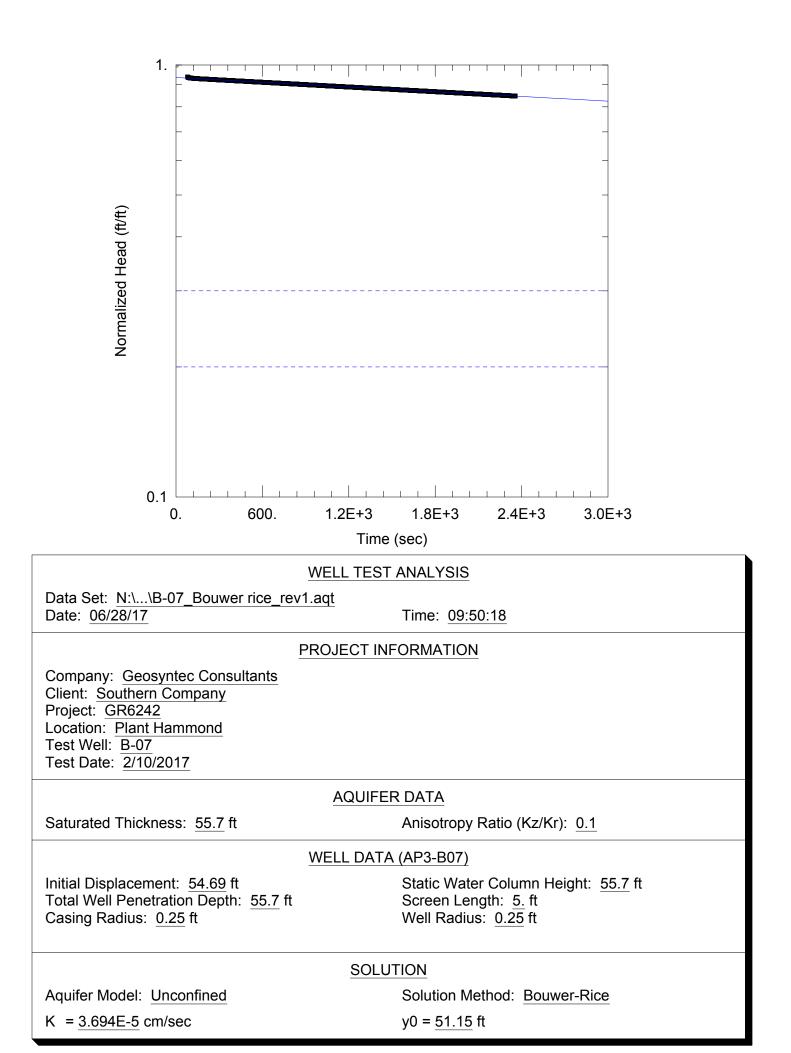


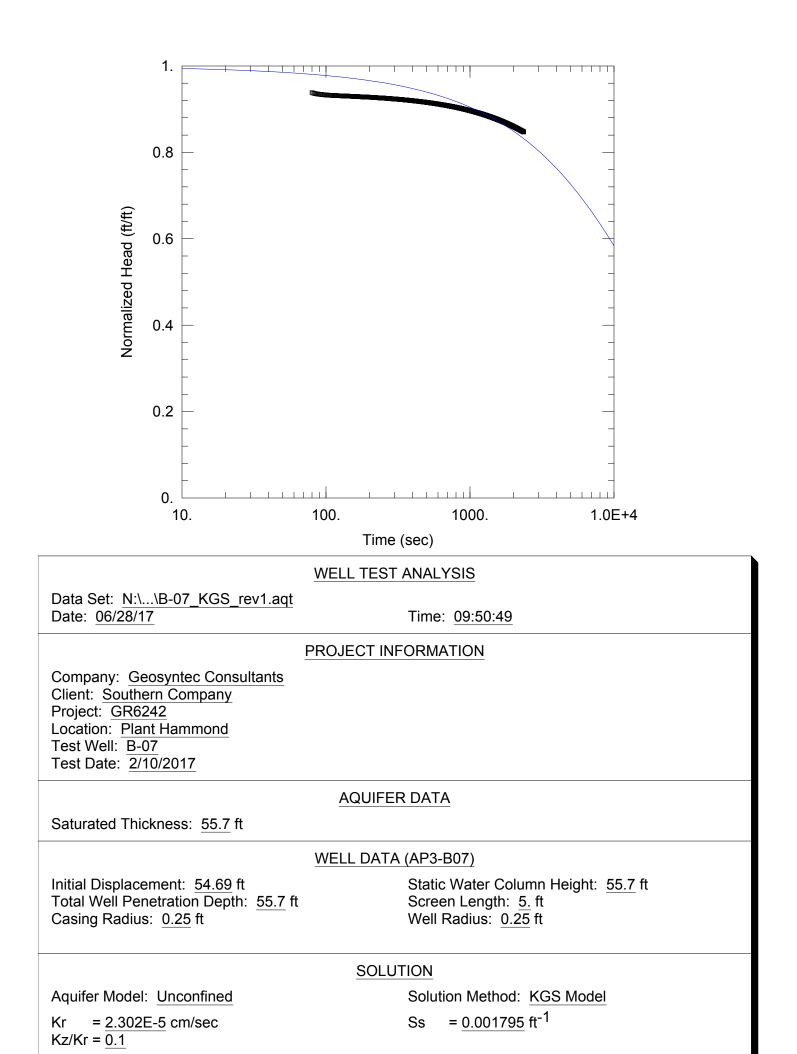


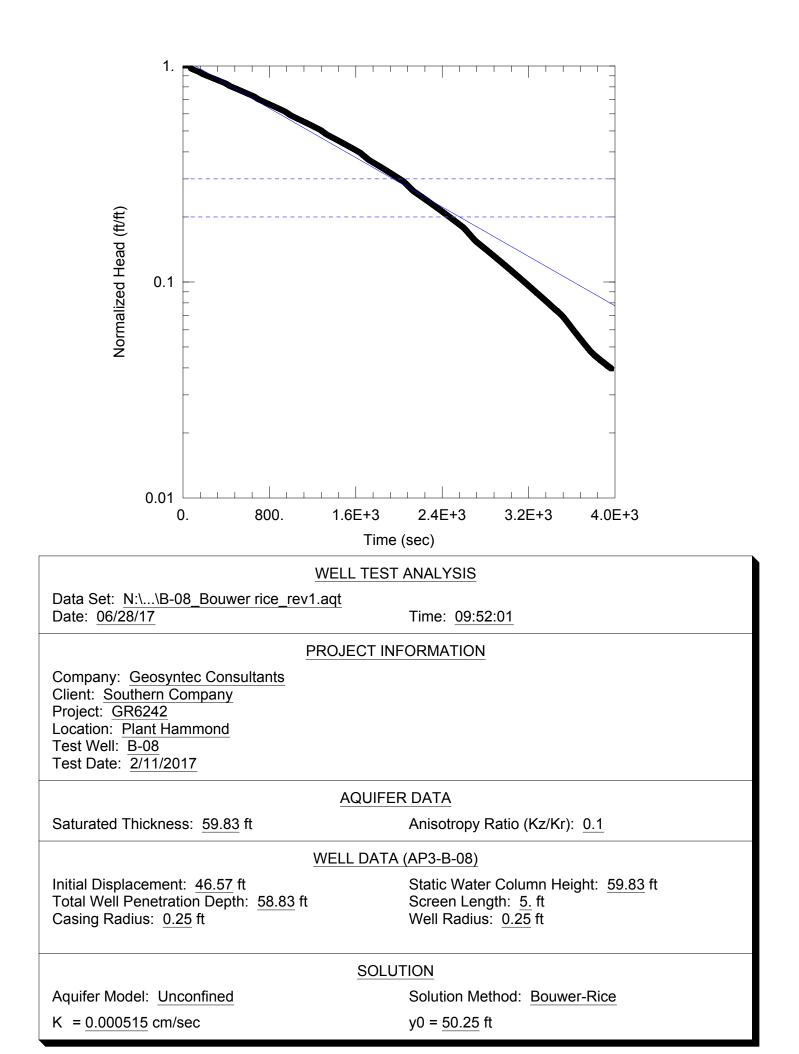












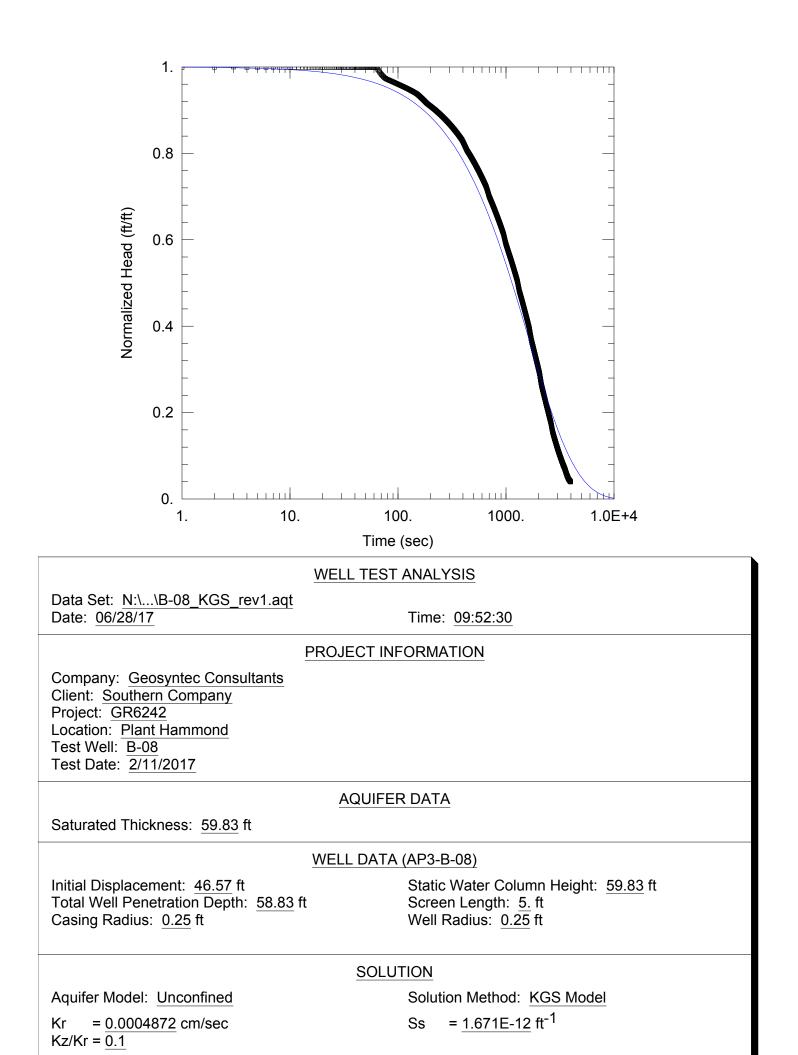


TABLE 1

FIELD PERMEABILITY MEASUREMENTS

Piez. No.	Permeability (Ft/Min)	Material Tested
P-lu P-3u P-11 P-14 P-17 P-19 P-20 P-23	2.0 x 10^{-5} 1.2 x 10^{-5} 1.0 x 10^{-5} 2.6 x 10^{-6} 1.0 x 10^{-5} 1.6 x 10^{-5} 2.3 x 10^{-6} 1.5 x 10^{-6}	Fill Fill Fill Fill Fill Fill Fill
P-1L P-3L P-4 P-5L P-6 P-15 P-18 Z-16 Z-21	2.0 x 10^{-4} 2.4 x 10^{-5} * 3.3 x 10^{-4} 7.1 x 10^{-4} 8.3 x 10^{-4} 1.1 x 10^{-4} 1.2 x 10^{-6} 2.7 x 10^{-4}	Residuum on rock Residuum on rock
P-10 P-13 P-16 P-22	5.1 x 10^{-4} 1.0 x 10^{-4} 8.4 x 10^{-5} 7.4 x 10^{-4}	Terrace Terrace Terrace (+ some residuum Terrace
P-4A P-9 P-12 P-21	$\begin{array}{c} 4.2 \times 10^{-3} \\ 1.0 \times 10^{-4} \\ ** \\ 7^{+} \times 10^{-4} \end{array}$	Rock (+ some residuum) Rock (+ some residuum) Rock (+ some residuum) Rock (+ some residuum)

* Permeability in P-4 was too high to measure with available equipment.

** There was no response in P-12, apparently due to clogging the piezometer with grout during the sealing process.

Source: Investigation of Water Loss, LETCO, October 1977.

APPENDIX F

Groundwater Model Calculation Package

Prepared for

Southern Company 241 Ralph McGill Blvd NE Atlanta, Georgia 30308

GROUNDWATER MODEL CALCULATION PACKAGE PLANT HAMMOND AP-3 GEORGIA POWER COMPANY Floyd County, Georgia

Submitted by

consultants

engineers | scientists | innovators

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

> Project Number: GR6242 November 2019

TABLE OF CONTENTS

1.0	INT	RODUCTION	1	
	1.1	Model Objectives	1	
2.0	MO	DEL CONSTRUCTION	2	
	2.1	Model Design	2	
	2.2	Model Grid and Layering	4	
	2.3	Model Boundaries	5	
		2.3.1 Model Recharge	6	
	2.4	Hydraulic Conductivity Zones	7	
	2.5	Model Calibration	7	
3.0	PRE	PREDICTIVE SIMULATIONS		
	3.1	Scenario 1: Baseline Condition (Base Case, Pre-Closure)	9	
	3.2	Scenario 2: Install Cover at AP-3; AP-1 at Baseline Pool Level (Post- Closure)	9	
	3.3	Scenario 3: Install Cover at AP-3 and Drain AP-1 (Post-Closure)	9	
4.0	SEN	SITIVITY ANALYSIS	10	
5.0	CONCLUSIONS 11		11	
6.0	REFERENCES 12		12	

LIST OF TABLES

Table 1	Geologic Zones and Hydraulic Conductivity Values
Table 2	Groundwater Elevations Near AP3-B-11 - 9 February 2017
Table 3	Fracture Spacing Evaluation
Table 4	Well-Specific Measured Hydraulic Conductivity Values
Table 5	Observed and Modeled Groundwater Elevation 9 February 2017
Table 6	Sensitivity Evaluation

LIST OF FIGURES

Figure 1 Layer 1 Hydraulic Conductivity Zones

- Figure 1a Layer 1 Hydraulic Conductivity Zones Near AP-3
- Figure 2 Layer 2 Hydraulic Conductivity Zones
- Figure 3 Layer 3 Hydraulic Conductivity Zones
- Figure 4 Layer 4 Hydraulic Conductivity Zones
- Figure 5 Layer 5 Hydraulic Conductivity Zones
- Figure 6 Layer 6 Hydraulic Conductivity Zones
- Figure 7 Layer 7 Hydraulic Conductivity Zones
- Figure 8 Layer 8 Hydraulic Conductivity Zones
- Figure 9 Layer 9 Hydraulic Conductivity Zones
- Figure 10a Plan View of Geologic Sections in EVS
- Figure 10b EVS Cross-Section A-A'
- Figure 11 EVS Cross-Section B-B'
- Figure 12 EVS Cross-Section C-C'
- Figure 13 EVS Cross-Section D-D'
- Figure 14 EVS Cross-Section E-E'
- Figure 15 EVS Cross-Section F-F'
- Figure 16 Conceptual Model Boundary Conditions
- Figure 16a Model Boundary Conditions
- Figure 17 Recharge Zones
- Figure 18 Modeled Groundwater Elevations for the Highly Fractured Limestone
- Figure 19 Modeled Groundwater Elevations for the Terrace Alluvium Material
- Figure 20 Simulated vs. Observed Groundwater Elevations
- Figure 21 Residual vs. Observed Groundwater Elevations
- Figure 22 Scenario 1 Model Predicted Groundwater Elevation Contour
- Figure 23 Scenario 2 Model Predicted Groundwater Elevation Contour
- Figure 24 Scenario 3 Model Predicted Groundwater Elevation Contour

LIST OF ACRONYMS

3D	three dimensional
AP	ash pond
cm/s	centimeters per second
EVS	Environmental Visualization System
ft	feet
$ft^2/d/ft$	square feet per day per foot
Geosyntec	Geosyntec Consultants
GPC	Georgia Power Company
HAR	Hydrogeologic Assessment Report
NAVD88	North American Vertical Datum of 1988
NRMSE	normalized root mean square error
PEST	Parameter Estimation Software
REV	Representative Elementary Volume
SCS	Southern Company Services
USGS	United States Geologic Survey

1.0 INTRODUCTION

This *Groundwater Model Calculation Package* (Report) was prepared to document the construction and calibration of the finalized three-dimensional (3D), steady-state, groundwater numerical flow model used to evaluate the groundwater flow conditions in the vicinity of Ash Pond 3 (AP-3 or Site) at the Georgia Power Company (GPC) owned and operated Plant Hammond (the Plant) near Rome, GA. This Report documents the findings and conclusions of the calibrated groundwater flow model, which was used to simulate existing condition and capping of AP-3 with dewatering of AP-1 and evaluate the impacts of pond closure on the groundwater flow system at the Plant. The Report has been prepared by Geosyntec Consultants, Inc. (Geosyntec) on behalf of Southern Company Services (SCS).

1.1 Model Objectives

The objectives of the numerical groundwater flow modeling were three-fold:

- Construct a steady-state groundwater model of the Site that is calibrated to representative groundwater conditions recorded in the field;
- Simulate groundwater conditions within AP-3 under the current closure scenario using the calibrated model;
- Using the simulated results to evaluate the post-closure groundwater conditions.

2.0 MODEL CONSTRUCTION

2.1 Model Design

Based on the geologic information described in Section 3.0 of the *Hydrogeologic* Assessment Report (Revision 01) – Ash Pond 3 (AP-3) (HAR Rev. 01), the numerical groundwater flow model is conceptualized as being a single aquifer system, composed of five geologic layers (i.e. fill, terrace alluvium material, residuum, highly weathered rock, and unweathered limestone). The geological layers were further vertically discretized to better evaluate flow in the model domain (Table 1). Generally, the geological layers, in addition to ash, were assigned to the numerical model layers as follows:

- Fill: Layer 1 and 2
- Ash: Layer 1 and 2
- Terrace Alluvium Material: Layer 3
- Residuum: Layer 4
- Highly weathered Rock: Layer 5
- Highly Fractured Rock (i.e. top 5 feet of Limestone): Layer 6
- Unweathered Limestone: Layers 7-9

Based on information provided in boring logs and a microgravity survey, the hydraulic properties of the geologic materials within the terrace alluvium material, highly weathered rock, and highly fractured rock were altered to more appropriately represent the materials (e.g., gravel or fractures that may indicate a greater than average hydraulic conductivity value than suggested by the geometric mean of measured values) found in these zones. These zones are shown in **Figures 1** through **9** and the justification for each zonation is provided in **Table 1**.

The bottoms of AP-1 and AP-3 were determined using historical as-built drawings published to GPC's webpage. Data from these sources were imported into the 3D visualization software Environmental Visualization System (EVS) and used to create the bottom of ash for AP-1 and AP-3.

The modular, 3D, finite difference groundwater flow model (MODFLOW), created by the United States Geological Survey (USGS), was used as the modeling program to simulate groundwater flow. Specifically, a Newton formulation of MODFLOW, MODFLOW-NWT (Niswonger, et al., 2011) was utilized because of its capabilities in solving non-linear equations associated with unconfined aquifers and non-linear boundary conditions, conditions relevant to the Site. The constant head package and the drain package (Niswonger, 2011) were used to simulate rivers/creeks and ephemeral steams, respectively. The recharge package (Niswonger, et al., 2011) was used to simulate recharge. Parameter estimation software (PEST) is a model independent parameter estimation program (Watermark Numerical Computing, 1994) that was used during the calibration process to assist in estimating model parameters such as hydraulic conductivity.

For the purposes of the MODFLOW groundwater flow model, the aquifer is assumed to act as an equivalent porous medium. However, a portion of the model domain is comprised of fractured rock. One rationale for this assumption is based on observed historical water levels and associated potentiometric surface maps that indicate a relatively smooth potentiometric surface without angular or sharp changes in the groundwater table.

Geophysical borehole logs were reviewed to evaluate the average open fracture spacing (**Table 3**). The evaluation indicated that in the borings where geophysics data were available that the average open fracture spacing varied from 0.25 to 0.65 fractures per foot with an average of 0.45 fractures per foot. These fracture spacings were used to calculate a representative elementary volume (REV). A REV is the smallest volume over which a measurement can be made that will yield a value representative of a whole. Since MODFLOW assumes groundwater flow in a porous medium (not fractures), it is necessary to understand the scale of the fractured rock system where groundwater flow is the same as in a porous medium. Generally, a REV of equivalent porous media flow occurs at scales of 30 to 50 times grain size diameter on a side. This same concept has been applied to fractured rock systems and for this Site would indicate that a REV for the portion of the limestone evaluated would range from a cube with sides measuring 7.5 feet to a cube with sides measuring 32.5 feet.

Geosyntec Consultants

2.2 Model Grid and Layering

The model domain consists of 344 rows, 344 columns, and 9 vertical layers. The model cell size varies from approximately 10 ft by 10 ft Near AP-3 and telescopes outward toward the model boundary.

Model layers represent the 5 geologic units described in the HAR Rev. 01 and **Table 1** herein. Ground surface elevations were based on a combination of actual ground surface topography from publicly-available regional LIDAR data and a Site topo map provided by SCS. Lithology and layer elevations were based on subsurface lithologic/geologic boring log descriptions from Site-specific field investigation data, and historical maps of AP-3 construction. Data from these sources were imported using EVS and interpolated to create surfaces for the top and bottom of each model layer. The top of layer 1 is land surface and the elevations are based on LIDAR elevation data provided by the USGS (USGS, 2017) and a Site topo map¹. Elevations for the bottoms of layer 1 through 9 were based on geological boring log data from the Site. The bottom of layer 9 (bottom of 1988 (NAVD88), which varies between 160 to 190 feet below the bottom of the highly fractured rock zone. **Figure 10b** though **Figure 15** show examples of EVS model layering along the cross section lines presented on **Figure 10a**.

In general, a minimum model layer thickness of 0.1 ft was applied to areas where interpolation of artificial pinch-outs were created due to a lack of geological data control points, or where physical pinch-outs of geologic units were observed (e.g. terrace alluvium material directly beneath AP-3). This minimum thickness was enforced because MODFLOW-NWT does not allow for a zero layer thickness in the model grid. For areas where a unit pinches out, cells with a minimum thickness of 0.1 ft were assigned hydraulic conductivity zones to match the geologic unit in the layer below. For example, the terrace alluvium material pinches out underneath AP-3, resulting in small layer thicknesses in model layer 3 beneath AP-3. Those cells were therefore assigned a hydraulic conductivity equal to that of the residuum in model layer 3.

¹ The topographic contours and details shown inside of the Dike limits were obtained from the stamped asbuilt final cover survey conducted by Martin Survey and Associates, Inc. of Holly Springs, GA for Salla Construction Company, LLC of Birmingham, AL, Dated 25 October 2012, as provided by Southern Company Services in the CAD file titled "PH-Final 12-4-12."

2.3 Model Boundaries

A conceptual level map of the boundary conditions is shown in **Figure 16** and the boundary conditions assigned to the model are shown in **Figure 16a**. The Coosa River was modeled by assigning a constant head boundary condition elevation of 561.45 ft NAVD88 to Layers 1-5. It should be noted that based on surface water elevation data collected by the USGS from 1 October 2007 until 20 May 2017 at a staff gauge located approximately eight miles east of Plant Hammond, the Coosa River stage has historically varied by 21.7 feet². The depth of the Coosa River is not known adjacent to the Plant and was assumed to be approximately 17 feet deep and extend to the top of the highly-fractured limestone.

Cabin Creek is shown on the USGS topo (USGS, 1967) in **Figure 16** to be continually present and was also modeled as a constant head boundary condition. However, observations made during Site visits indicated that Cabin Creek is shallow. Furthermore, the elevation of Cabin Creek changes from approximately 570 ft to 561.45 ft NAVD88. Therefore, the constant head boundary condition that represents Cabin Creek is assigned to the uppermost active layer. For example, in one portion of the model the boundary condition would be assigned to layer 1. However, as Cabin Creek cuts down through the terrain, it reaches a point where it influences layer 2 and layer 1 is now dry. In these instances, the constant head boundary condition would be assigned to layer 1.

The USGS topo map indicates an ephemeral stream along the western portion of the model. Due to the ephemeral nature of the unnamed stream, it was assigned as a drain boundary condition. The drain elevations were derived from the Site-specific topo data and USGS topo and ranged from 590.6 ft NAVD88 near the northern edge of the model to the southern terminus of the Coosa River with a 9 February 2017 measured elevation of 561.45 ft NAVD88. The drain conductance was a calibrated value and set at 10 square feet per day per foot (ft²/d/ft). Like Cabin Creek, this unnamed stream is shallow, and therefore the drain boundary condition was only assigned to the uppermost active layer.

2

https://nwis.waterdata.usgs.gov/usa/nwis/uv/?cb_00065=on&format=rdb&site_no=02397000&period=& begin_date=2007-10-01&end_date=2017-05-21

The USGS topo map in **Figure 16** shows that a topographic ridge is located north and west of the Site. It was assumed that this ridge functions as a no flow boundary condition as surface water runoff appears to collect in streams or water bodies on either site of the ridge.

AP-1 and AP-2 were both modeled as constant head boundary conditions. Ash was present in layers 1 and 2 in AP-1. Therefor the 9 February 2017 measured constant head boundary condition (585.09 ft NAVD88) was applied to both layers 1 and 2 in AP-1. Less information is available regarding AP-2 therefore the 9 February 2017 measured constant head boundary condition of 596.43 ft NAVD88 was applied only to the uppermost active cell. Similarly, little information is known regarding the industrial wastewater ponds to the east of Cabin Creek, which are not owned by GPC. Therefore, the surface water elevation derived from LIDAR data (588 ft NAVD88) was assigned to the uppermost active cell in these locations.

2.3.1 Model Recharge

The USGS performed a recharge study for the Coosa River basin (USGS, 1996). The study evaluated average recharge for the 4,040 square mile drainage basin that is represented by streamflow measurements made at a point on the Coosa River approximately 8 miles east of the Site. The recharge study estimated that the average recharge rate for the entire basin was 13.2 inches per year, but may be as low as 3.2 inches per year during droughts. It should be mentioned that these estimates are averages. Actual recharge will vary locally based on topography, surface water, run-off, man-made drainage features, rainfall intensity, etc. Therefore, these two recharge estimates were used as the upper and lower bounds for estimating recharge assigned to various zones within the model domain during model calibration. As shown in Figure 17, four recharge zones were assigned to the Site. The area south of the railroad tracks does not receive recharge as much of the area is covered with pavement or buildings and the remainder of the area is close to the Coosa River and is therefore in a discharge area. The area north of the railroad tracks was assigned a recharge value of 6.38 inches per year. This reflects the lower amount of recharge expected in the area due to runoff from relatively steep topography and the presence of man-made stormwater ditches. The area north of Cabin Creek was assigned a recharge of 13.2 inches per year as it is the headwaters area for Cabin Creek. Additionally, AP-3 was assigned a recharge rate of 3.7 inches per year in stormwater runoff is directed to an inner perimeter stormwater collection system. This recharge rate depicts baseline conditions for when the AP-3 cover system was incomplete

Geosyntec consultants

(i.e., February 9, 2017). It should be noted that 0.57 inches of precipitation fell on nearby Rome, GA on February 8, 2017 (wunderground.com, 2017). This is one day before Geosyntec personnel were on Site collecting static groundwater and surface water measurements that were used to calibrate the model.

2.4 Hydraulic Conductivity Zones

In general, hydraulic conductivity zonation was based on a specific geologic material, which represented a layer in the model. The range, geometric mean and model calibrated hydraulic conductivity values for each geologic material are presented in Table 1. If available, well-specific hydraulic conductivity values were incorporated into the model (Table 4). However, model calibration was not possible using a single hydraulic conductivity for each geologic material as this produced unacceptable residuals in the residuum, highly weathered rock, and highly fractured rock. Therefore, the boring logs of monitoring wells with relatively high residuals were evaluated for the presence of material within the well screen that may be hydraulically different than that of the main geologic unit. Additionally, a microgravity survey was evaluated for the presence of bedrock zones that may contain open fractures/ solution voids (low density materials) or lower hydraulic conductivity zones (high density materials). Finally, where available, the measured hydraulic conductivity in wells with relatively high residuals were evaluated for differences from the value used in the model for the geologic unit. Figures 1 through 9 show the hydraulic conductivity zones used in layers 1 through 9. A table of hydraulic conductivity zones is shown in Table 1.

2.5 Model Calibration

The model was calibrated to groundwater elevation targets based on measurements at monitoring wells and surface water locations made by Geosyntec on February 9, 2017. These measurements, well screen elevations, calibrated modeled values for each well are shown on **Table 5**. Wells were assigned to model layers based on their screen elevations. The groundwater flow model was calibrated to the actual on-site groundwater conditions by setting drain conductance to 10 $ft^2/d/ft$ and then modifying recharge and hydraulic conductivity using PEST version 13.6 (Watermark, 1994) to allow the named parameters to vary within measured ranges until the best statistical fit between measured and observed head elevations was obtained. Following the use of PEST, zones within select geologic materials were adjusted according to available data as described in Section 2.4 to obtain a satisfactory fit. The model was considered calibrated once simulated output

7

closely approximated observed field conditions (e.g. inferred groundwater flow directions, groundwater gradients, groundwater elevations at monitoring wells observed on Site), and when calibration statistics indicated a low residual mean error and a normalized root mean square error (NRMSE) less than 10%. NRMSE is used to measure the difference between observed groundwater values and model predicted values. The smaller the difference between observed and predicted values, the smaller the NRMSE percentage. Typically, groundwater models are considered calibrated when NRMSE is less than 10%.

Simulated groundwater elevation contours of the calibrated model are shown in Figure 18 for the highly fractured rock zone and Figure 19 for the terrace alluvium material. These zones were selected because most of the wells near AP-3 are screened in the highly weathered zone/highly fractured zone and most of the wells near AP-1 are screened at least partially in the terrace alluvium material. Simulated contours and flow directions generally matched historical potentiometric contour and flow direction maps generated from measured groundwater elevations. The simulated and the observed groundwater elevations were compared at the 36 monitoring well targets incorporated into the model by calculating the residual (observed groundwater elevation minus simulated groundwater elevation) for each well target (Table 5). The minimum residual head value was -3.81 ft and the maximum residual head value was 3.20 ft, over a range in observed head values of 20.76 ft. Comparison statistics for the well targets in **Table 5** show a residual mean error (ME) of -0.15 ft and a NRMSE of 9.9%); the proximity of these statistics to zero indicates a good match between observed and simulated heads and that the model is reasonably calibrated. The computed mass water balance error for the model was also small (-2.0 E-04%). Figure 20 plots observed versus simulated head values for the 36 targets, and shows a good match between observed and simulated heads based on proximity of the results to the 1:1 correlation line. Figure 21 shows observed head versus model residuals and shows that there is no strong bias to the residuals. Combined with the comparison statistics and negligible mass balance error, Figure 20 and Figure 21 support the conclusion that the flow model is a reasonable representation of actual Site conditions. Overall, simulated head contours, flow directions, calibration statistic, and model residuals indicates that the model is reasonably calibrated.

3.0 PREDICTIVE SIMULATIONS

After calibration, the groundwater model was used to evaluate the predictive scenario for pre-closure conditions (i.e., calibration run) and final closure design at steady state.

3.1 Scenario 1: Baseline Condition (Base Case, Pre-Closure)

This scenario is the calibrated model representing the conditions present at the Site before completion of the cover system, i.e. the "existing condition" at the time of model construction (i.e., February 9, 2017). Figure 22 shows the baseline groundwater elevation contours generated from the model simulation.

3.2 Scenario 2: Install Cover at AP-3; AP-1 at Baseline Pool Level (Post-Closure)

Scenario 2 represents the conditions at the Site following completion of the cover system at AP-3 but prior to the dewatering and closure of AP-1. Under this scenario, recharge over AP-3 was reduced to zero and the constant head boundary condition at AP-1 was set at 585.09 ft to represent the pool water level measured February 9, 2017. Figure 23 shows model predicted groundwater elevation contour map.

3.3 Scenario 3: Install Cover at AP-3 and Drain AP-1 (Post-Closure)

Scenario 3 represents the conditions at the Site following completion of the cover system at AP-3 and the anticipated closure of AP-1. Under this scenario, recharge over AP-3 was reduced to zero and the constant head boundary condition at AP-1 is removed to represent the removal of free water and closure of that unit. **Figure 24** shows model predicted groundwater elevation contour map.

Groundwater flow models are necessarily simplified mathematical representations of complex natural systems. Therefore, all groundwater models have limits to their accuracy and associated uncertainties in model predictions. The goal of this model was not to define precise predictive scenarios, but to provide relative groundwater elevation and flow information. The supporting calibration statistics and representative flow simulations provide an acceptable degree of confidence that the model is calibrated and suitable for its intended purpose.

Geosyntec[>]

4.0 SENSITIVITY ANALYSIS

A sensitivity analysis was performed to evaluate the effect that decreased horizontal and vertical hydraulic conductivity of the residuum would have on the calibration of the model. This parameter was chosen as the residuum is present beneath the ash in AP-3 and the hydraulic conductivity of the residuum plays a role in the feasibility of closure options. For the sensitivity analysis, the horizontal hydraulic conductivity of the residuum was reduced from 2.20×10^{-4} centimeters per second (cm/s) to 2.20×10^{-5} cm/s and the vertical hydraulic conductivity was reduced from 9.15×10^{-5} cm/s to 1.46×10^{-6} cm/s. The residuals between the calibrated head values and the sensitivity head values are shown in **Table 6**. The relatively small residuals (average residual is -0.06 ft and absolute average residual is 0.12 ft) between the simulations indicates that the model is not very sensitive to the hydraulic conductivity of the residuum. The implies that the potential for natural fluctuation of hydraulic conductivity within the residuum will not negatively impact the constructed model's ability to accurately predict scenarios.

Geosyntec[▷]

5.0 CONCLUSIONS

A three-dimensional steady state groundwater flow model was constructed to simulate various scenarios at the Site. Once calibrated, the model was used to simulate the groundwater flow conditions that would result from constructing a cap at AP-3 and draining AP-1 (Scenario 3). Under this scenario, the model predicts approximately a four-foot reduction in the groundwater elevation across the Site relative to the modeled pre-closure baseline conditions (Scenario 1).

11

6.0 **REFERENCES**

- Geosyntec Consultants, 2019. Hydrogeologic Assessment Report (Revision 01) Ash Pond 3 (AP-3). November 2019.
- Niswonger, R.G., Panday, Sorab, and Ibaraki, Motomu, 2011, MODFLOW-NWT, A Newton formulation for MODFLOW-2005: U.S. Geological Survey Techniques and Methods 6-A37, 44 p.
- USGS, 1967. Rock Mountain Quadrangle, Georgia. 1:24,000. 7.5 Minute Series. Reston, VA: United States Department of the Interior, USGS, 1967.
- USGS, 1996. Groundwater Resources of the Coosa River Basin in Georgia and Alabama-Subarea 6 of the Apalachicola-Chattahooche-Flint and Alabama-Coosa-Tallapoosa River Basins. Open File Report 96-177.
- USGS, 2014. Rock Mountain Quadrangle, Georgia. 1:24,000. 7.5 Minute Series. Reston, VA: United States Department of the Interior, USGS, 2014.
- USGS, 2017. (http://nationalmap.gov/3DEP/index.html (or http://viewer.nationalmap.gov/basic/)
- Watermark Numerical Computing, 1994. PEST Model Independent Parameter Estimation.
- Wunderground.com, 2017. https://www.wunderground.com/history/airport/KRMG/2017/2/22/MonthlyCale ndar.html?req_city=Rome&req_state=GA&req_statename=&reqdb.zip=30161 &reqdb.magic=1&reqdb.wmo=99999

TABLES

	Assigned Groundwater		Horizontal Hydraulic Conductivity, K _h (cm/s)				Vert	ical Hydraulic Co	onductivity, K	_v (cm/s)
Geologic Unit	Model Layer	Data Source	Geometric Mean	Model	Range of Values	Number of Observations	Geometric Mean	Model	Range of Values	Number of Observations 6
Residuum	4	Law Engineering (1977), Southern Company (2014) - K _h Golder (2016) & Geosyntec (2017) - K _v	2.01E-04	2.20E-04	6.10E-07 to 2.35E-02	13	2.91E-07	9.15E-05	1.00E-07 to 1.40E-06	6
Fill	1, 2	Law Engineering (1977) - K _h Golder (2016) & Geosyntec (2017) - K _v	3.33E-06	1.02E-05	7.62E-07 1.02E-05	8	4.12E-08	1.5E-07 at berm; 1.85E-06 elsewhere	1.50E-08 to 1.50E-07	4
Terrace Material	3	Law Engineering (1977) - K_h Golder (2016) & Geosyntec (2017) - K_v	1.21E-04	1.11E-03	4.27E-05 to 3.76E-04	4	9.47E-08	2.14E-04	6.40E-08 to 1.40E-07	2
Rock (+ some residuum)	5, 6	Law Engineering (1977) - K _h	3.38E-04	3.38E-03	5.08E-05 to 2.13E-03	3	-	3.38E-04	-	-
Limestone	7, 8, 9	Geosyntec (2017) - K _h	4.99E-04	3.53E-04	6.22E-05 to 2.82E-03	7	-	3.53E-05	-	-

Notes:

1) The samples tested for vertical hydraulic conductivity of the terrace material contained more clay than average and likely underestimate the vertical hydraulic conductivity.

2) The following additional hydraulic conductivity zones are shown on Figures 1 through 9. The hydraulic conductivities (cm/s) and rationale for changing the hydraulic conductivity are shown below:

Low Density Limestone Kh=1.76E-02 Kv=1.76E-03 Calibrated based on assumed increased fracture density from microgravity survey

High Density Limestone Kh=3.53E-05 Kv=3.53E-06 Calibrated based on assumed decreased fracture density from microgravity survey

High K Terrace Material Kh=5.00E-02 Kv=5.00E-03 Calibrated based on relatively high K values measured at AP1-MW6 and AP1-MW7, sand lense in APC1-5S, and sandy gravel in AP1-C4.

Low K residuum Kh=8.82E-0 6Kv=8.82E-07 Used lower range of K for residuum based on presence of only clay in this boring.

East of AP1 Low K Residuum Kh=3.38E-05 Kv=3.38E-06 Used lower range of K for residuum based on presence of only clay in this boring.

East of AP1 High K Residuum Kh=7.06E-03 Kv=7.06E-04 Calibrated based on presence of sandy gravel in well screen of AP1C-1

SW of AP1 Sand Kh=5.00E-02 Kv=5.00E-03 Calibrated based on sand seam in residuum at AP1C-6

SW of AP3 Highly Weathered Limestone Kh=8.42E-02 Kv= 8.42E-03 Calibrated based on partially weathered rock (shale gravel) AP3-MW21 and AP1-MW-1

SW of AP3 High K Highly Fractured Zone Kh=2.68E-02 Kv=2.68E-03 Calibrated based on partially weathered rock (shale gravel) AP3-MW21 and AP1-MW-1

water Kh=3.53E+00 Kv=3.53E+00 High K used to simulate water in Coosa River and Cabin Creek.

Monitoring Well Name	Easting (ft)	Northing (ft)	Distance from AP3-B-11	Groundwater Elevation 2/9/17 (ft)	Reduction in Groundwater Elevation from AP3-B-11 (ft)
AP3-B-4	1942920.34	1550709.19	320	567.14	16.98
AP3-B-5	1942521.24	1550275.29	295	570.48	13.64
AP3-B-9	1942654.24	1550662.39	120	567.00	17.12
AP3-B-10	1942345.89	1550500.71	300	568.89	15.23
AP3-B-11	1942643.26	1550545.31	0	584.12	0.00

Table 2. Groundwater Elevations Near AP3-B-11 - February 9, 2017

Notes:

1) Elevations are referenced to NAVD88

2) Northing and Easting reference the Georgia State Plane West (NAD83)

Table 3. Fracture Spacing Evaluation

Borehole Name	Length of Borehole Geophysics Data (ft)	Total Number of Open Fractures	Total Open Space (ft)	Fractures per Foot	Open Space per length (ft/ft)
AP3-B-2	59	32	2.85	0.54	0.048
AP3-B-3	44.5	11	1.03	0.25	0.023
AP3-B-4	3.1	2	0.50	0.65	0.161
AP3-B-9	2.75	1	0.65	0.36	0.236

Monitoring Well Name	Easting (ft)	Northing (ft)	Well Screen Midpoint Elevation (ft)	Model Layer	Measured Horizontal Hydraulic Conductivity (cn	Hydraulic Conductivity (cm/s)		cal tivity
AP1-MW-1	1941590.75	1549936.41	563.10	6	2.68E-03	e	-	
AP1-MW-5	1942445.49	1548430.84	555.60	6	1.84E-03	e	-	
AP1-MW-6	1941686.57	1548381.22	554.30	6	1.14E-02	e	-	
AP1-MW-7	1941084.33	1548230.08	556.50	4	2.35E-02	e	-	
APA-4 (HGWA-4MW-19)	1939386.06	1549932.71	567.90	3	9.74E-04	e	-	
APA-2 (HGWA-1MW-20)	1940773.28	1550423.59	568.40	7	1.41E-03	e	-	
AP3-MW-21	1941812.40	1550265.01	565.50	5	8.42E-03	e	-	
HGWA-122 (AP3-MW-22)	1941892.64	1551247.62	565.70	6	2.50E-02	e	-	
AP3-MW-23	1942503.03	1551636.22	558.10	6	5.04E-02	e	-	
HGWC-124 (AP3-MW-24)	1942787.04	1551618.74	552.70	7	1.27E-03	e	-	
HGWC-8 (AP1C-2)	1942392.75	1549114.34	559.43	3	-		6.40E-08	e
HGWC-9 (AP1C-3)	1942215.01	1548692.82	538.62	5	-		1.50E-08	e
HGWC-11 (AP1C-5S)	1941146.65	1548477.54	560.33	4	-		6.10E-08	e
AP3-B-1	1942043.87	1550918.48	530.63	7	5.70E-04	b	1.40E-06	с
AP3-B-2	1941995.70	1551318.19	493.00	8	2.34E-04 (496.80'-491.80')	b	1.10E-07	с
AP3-B-3	1942862.68	1551280.14	507.00	7	2.82E-03 (549.15'-544.15')	b	2.90E-07	с
AP3-B-4	1942920.34	1550709.19	552.39	6	9.25E-04	b	2.10E-08	d
AP3-B-5	1942521.24	1550275.29	542.83	7	6.95E-04	b	7.60E-07	с
AP3-B-6S	1942122.65	1550542.92	581.95	1	4.13E-02	а	-	
AP3-B6I	1942123.35	1550538.41	546.48	5	9.75E-05	а	1.00E-07	с
AP3-B6D	1942124.44	1550530.98	523.76	7	6.22E-05	a	-	
AP3-B-8	1942521.40	1551323.29	519.59	7	5.15E-04	b	1.80E-07	с

Notes:

"-" = data unavailable

Source citation of hydraulic conductivity values:

a) Measured via slug test by Geosyntec, 2017b) Measured via packer test by Geosyntec, 2017

c) Laboratory measurement of residuum vertical hydraulic conductivity by Geosyntec, 2017

d) Laboratory measurement of fill vertical hydraulic conductivity by Geosyntec, 2017

e) Provided by others

Elevations are referenced to NAVD88

Monitoring Well Name	Easting (ft)	Northing (ft)	Well Screen Midpoint Elevation (ft)	Model Layer	Observed Groundwater Elevation (ft)	Simulated Groundwater Elevation (ft)	Residual (ft)
AP1-MW-1	1941590.75	1549936.41	563.10	6	581.53	579.23	2.30
AP1-MW-5	1942445.49	1548430.84	555.60	6	562.79	562.23	0.56
AP1-MW-6	1941686.57	1548381.22	554.30	6	563.41	563.49	-0.08
AP1-MW-7	1941084.33	1548230.08	556.50	4	562.66	563.54	-0.88
APA-4 (HGWA-4MW-19)	1939386.06	1549932.71	567.90	3	583.42	582.87	0.55
APA-2 (HGWA-1MW-20)	1940773.28	1550423.59	568.40	7	580.12	583.39	-3.27
AP3-MW-21	1941812.40	1550265.01	565.50	5	581.45	578.25	3.20
HGWA-122 (AP3-MW-22)	1941892.64	1551247.62	565.70	6	578.57	579.14	-0.57
AP3-MW-23	1942503.03	1551636.22	558.10	6	574.61	574.37	0.24
HGWC-124 (AP3-MW-24)	1942787.04	1551618.74	552.70	7	570.50	570.83	-0.33
HGWA-1 (APA-2MW-20)	1940773.31	1550423.69	568.30	7	580.12	583.39	-3.27
HGWA-2 (APA-3S)	1939845.20	1549796.40	565.23	3	581.02	582.86	-1.84
HGWA-3 (APA-3D)	1939833.46	1549793.93	548.19	5	581.20	581.40	-0.20
HGWA-4 (APA-4MW-19)	1939386.17	1549932.76	567.90	3	583.42	582.87	0.55
HGWC-7 (AP1C-1)	1942319.97	1549520.39	556.32	5	575.77	572.93	2.84
HGWC-8 (AP1C-2)	1942392.75	1549114.34	559.43	3	577.42	574.39	3.03
HGWC-9 (AP1C-3)	1942215.01	1548692.82	538.62	5	566.10	566.85	-0.75
HGWC-10 (AP1C-4)	1941644.41	1548469.51	561.66	3	565.15	566.38	-1.23
HGWC-11 (AP1C-5S)	1941146.65	1548477.54	560.33	4	564.80	567.55	-2.75
HGWC-12 (AP1C-5D)	1941152.08	1548475.82	550.33	6	564.80	568.61	-3.81
HGWC-13 (AP1C-6)	1940900.41	1548628.52	554.76	4	576.53	573.48	3.05
HGWC-120 (P20-2016)	1942907.17	1551082.00	552.76	7	566.60	567.11	-0.51
AP1A-1	1941613.87	1550080.50	571.17	3	581.59	581.51	0.08
AP3-B-1	1942043.87	1550918.48	530.63	7	577.63	575.12	2.51
AP3-B-2	1941995.70	1551318.19	493.00	8	578.20	577.11	1.09
AP3-B-3	1942862.68	1551280.14	507.00	7	564.50	568.30	-3.80
AP3-B-4	1942920.34	1550709.19	552.39	6	567.14	566.28	0.86
AP3-B-5	1942521.24	1550275.29	542.83	7	570.48	568.80	1.68
AP3-B-6S	1942122.65	1550542.92	581.95	1	574.80	577.15	-2.35
AP3-B6I	1942123.35	1550538.41	546.48	5	574.70	572.83	1.87
AP3-B6D	1942124.44	1550530.98	523.76	7	572.87	573.11	-0.24

Monitoring Well Name	Easting (ft)	Northing (ft)	Well Screen Midpoint Elevation (ft)	Model Layer	Observed Groundwater Elevation (ft)	Simulated Groundwater Elevation (ft)
AP3-B-7	1942387.32	1551042.74	518.36	7	571.56	571.48
AP3-B-8	1942521.40	1551323.29	519.59	7	573.14	572.01
AP3-B-9	1942654.24	1550662.39	538.00	7	567.00	568.55
AP3-B-10	1942345.89	1550500.71	552.69	4	568.89	572.44
AP3-B-11*	1942643.26	1550545.31	539.62	6	584.12	568.90
						Min Residual

Max Residual Range Mean Error NRMSE

Notes:

*AP3-B-11 was not included in the statistical evaluations. The measured groundwater elevation in this well is approximately 15 feet higher than it's nearest neighbors

1) Elevations are referenced to NAVD88. Northing and Easting reference the Georgia State Plane West (NAD83)

r	Residual (ft)
	0.08
	1.13
	-1.55
	-3.55
	15.22
l	-3.81
1	3.20
	20.76
	-0.15
	9.9%

Monitoring Well Name	Calibrated Head (ft)	Sensitivity Analysis Head (ft)	Residual	
AP1-MW-1	579.25	579.35	-0.10	
AP1-MW-5	562.26	562.23	0.04	
AP1-MW-6	563.58	563.51	0.06	
AP1-MW-7	564.08	563.70	0.39	
HGWA-4 (APA-4MW-19)	582.95	583.15	-0.20	
APA-2 (HGWA-1MW-20)	583.43	583.58	-0.16	
AP3-MW-21	578.26	578.40	-0.13	
HGWA-122 (AP3-MW-22)	579.15	579.36	-0.20	
AP3-MW-23	574.38	574.53	-0.15	
HGWC-124 (AP3-MW-24)	570.83	570.90	-0.07	
HGWA-1 (APA-2MW-20)	583.43	583.58	-0.16	
HGWA-2 (APA-3S)	582.93	583.10	-0.17	
HGWA-3 (APA-3D)	581.47	581.60	-0.13	
HGWA-4 (APA-4MW-19)	582.95	583.15	-0.20	
HGWC-7 (AP1C-1)	572.94	573.07	-0.13	
HGWC-8 (AP1C-2)	574.40	574.45	-0.06	
HGWC-9 (AP1C-3)	566.90	566.89	0.02	
HGWC-10 (AP1C-4)	566.68	566.37	0.31	
HGWC-11 (AP1C-5S)	567.75	567.60	0.15	
HGWC-12 (AP1C-5D)	568.73	568.62	0.10	
HGWC-13 (AP1C-6)	573.55	573.53	0.03	
HGWC-120 (P20-2016)	567.11	567.12	0.00	
AP1A-1	581.53	581.64	-0.11	
AP3-B-1	575.14	575.29	-0.16	
AP3-B-2	577.13	577.29	-0.16	
AP3-B-3	568.30	568.30	0.00	
AP3-B-4	566.28	566.30	-0.02	
AP3-B-5	568.81	568.90	-0.09	
AP3-B-6S	577.17	577.61	-0.45	
AP3-B6I	572.84	572.94	-0.10	
AP3-B6D	573.12	573.23	-0.11	
AP3-B-7	571.49	571.53	-0.04	
AP3-B-8	572.02	572.09	-0.08	
AP3-B-9	568.55	568.59	-0.04	
AP3-B-10	572.45	572.38	0.06	
AP3-B-11	568.91	568.95	-0.05	
		Average	-0.06	
		Abs. Average	0.12	

FIGURES

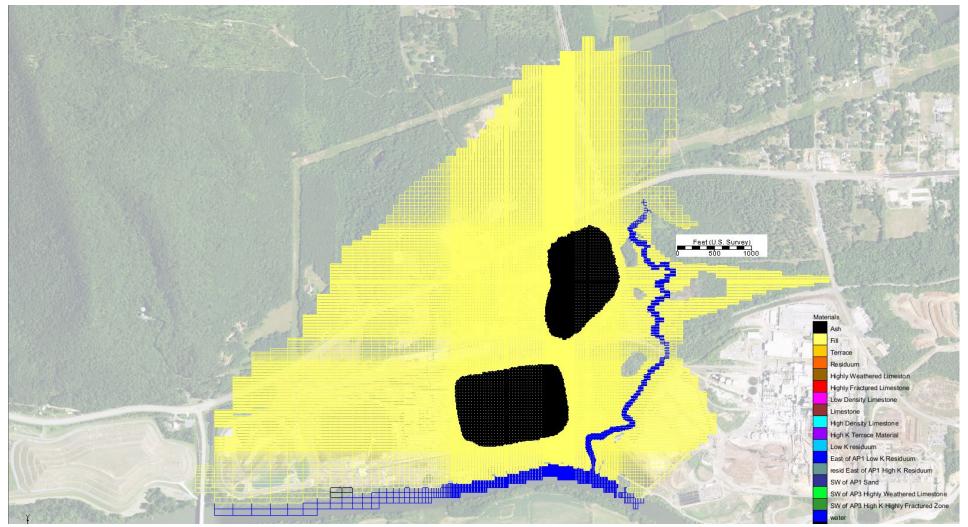


Figure 1: Layer 1 Hydraulic Conductivity Zones



Figure 1a: Layer 1 Hydraulic Conductivity Zones Near AP-3

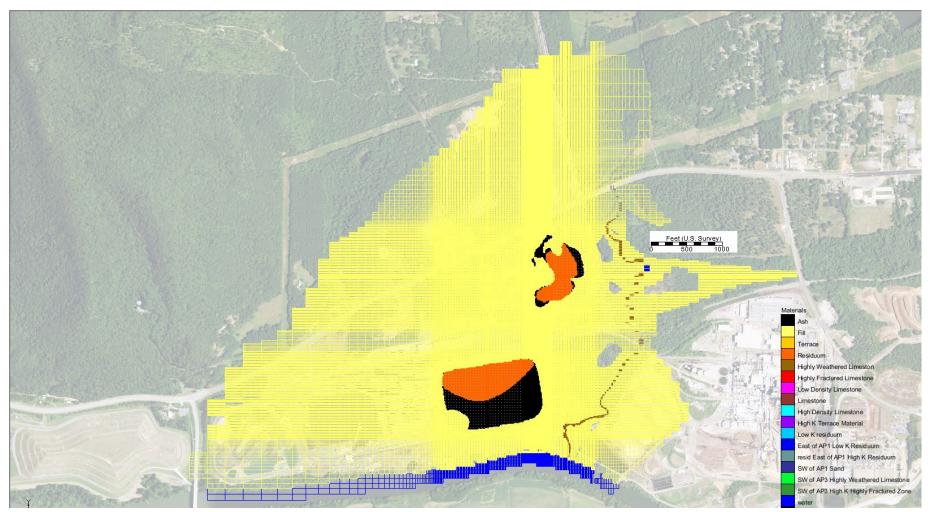


Figure 2: Layer 2 Hydraulic Conductivity Zones

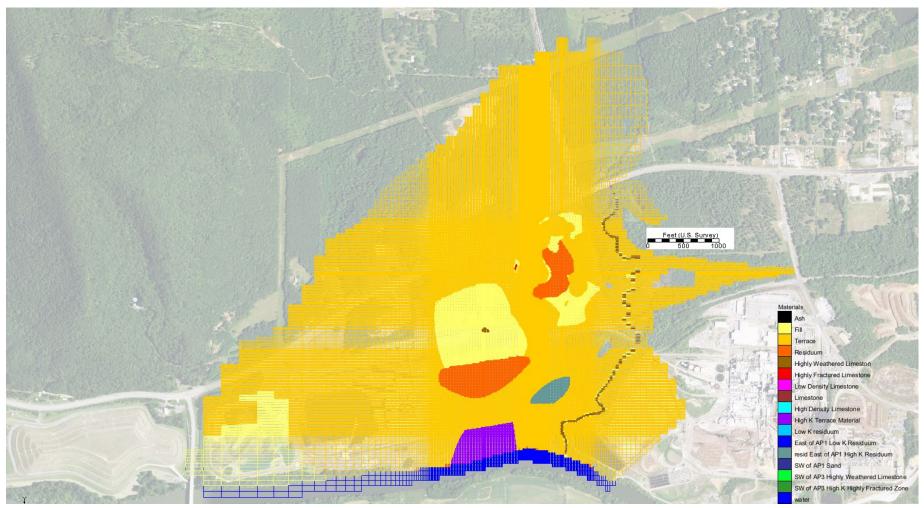


Figure 3: Layer 3 Hydraulic Conductivity Zones

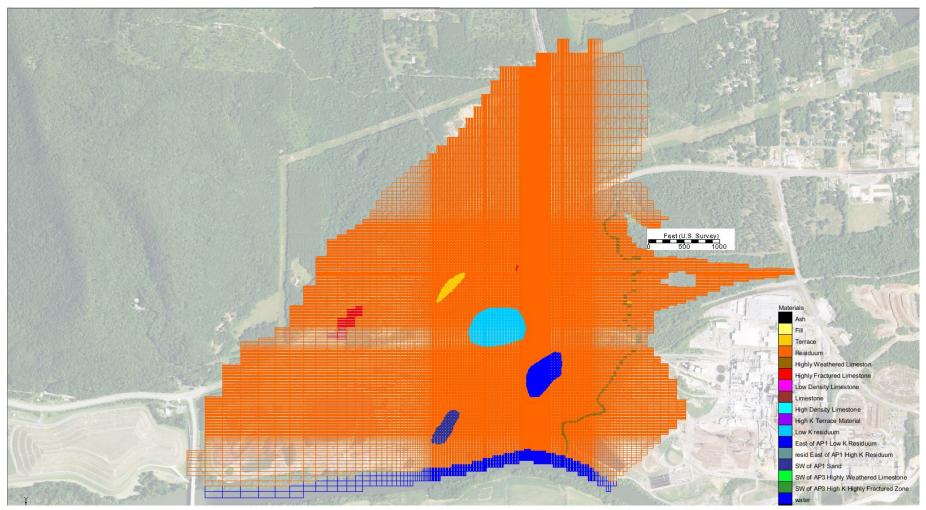


Figure 4: Layer 4 Hydraulic Conductivity Zones

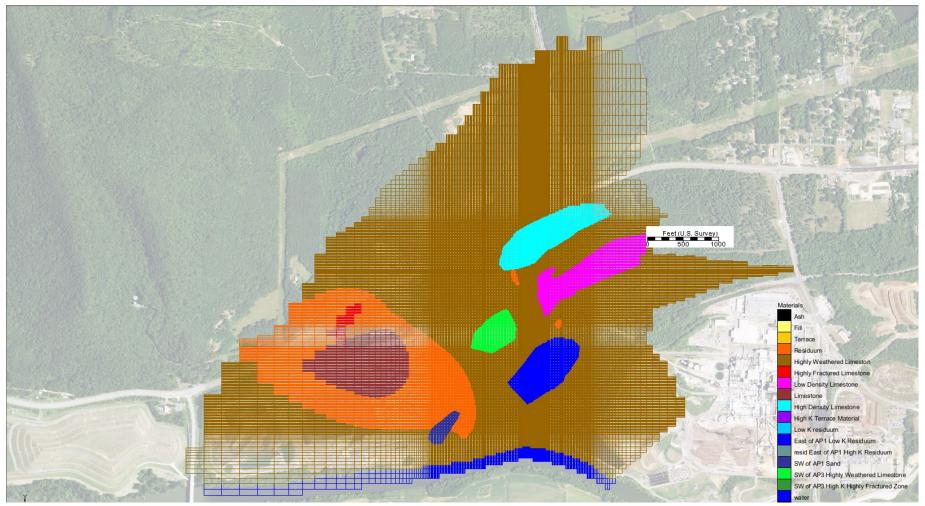


Figure 5: Layer 5 Hydraulic Conductivity Zones

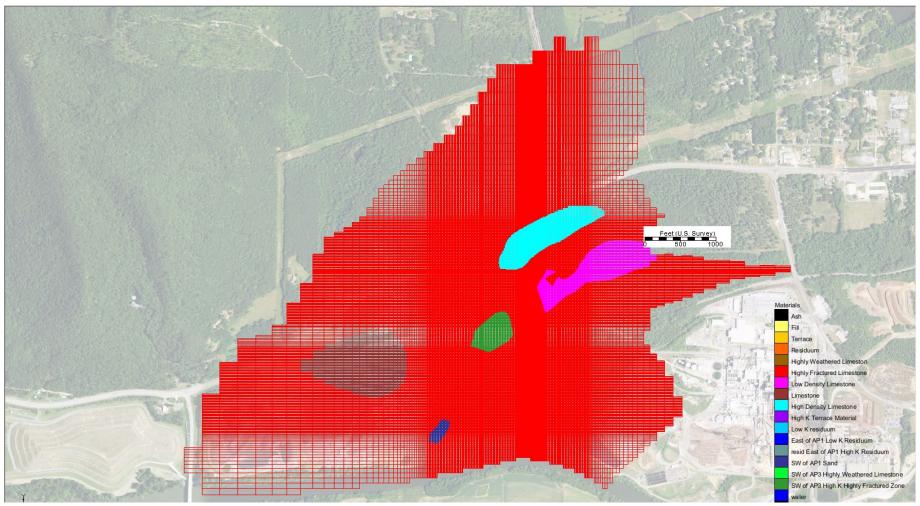


Figure 6: Layer 6 Hydraulic Conductivity Zones

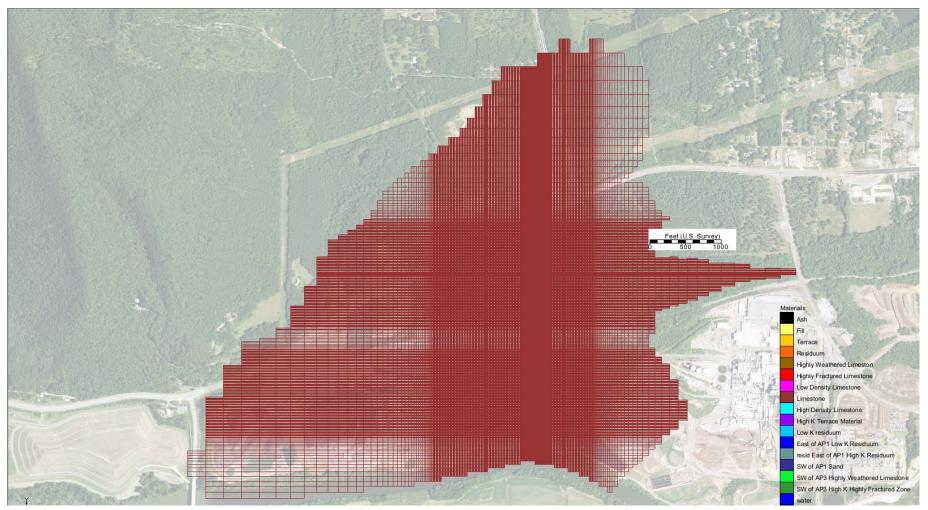


Figure 7: Layer 7 Hydraulic Conductivity Zones

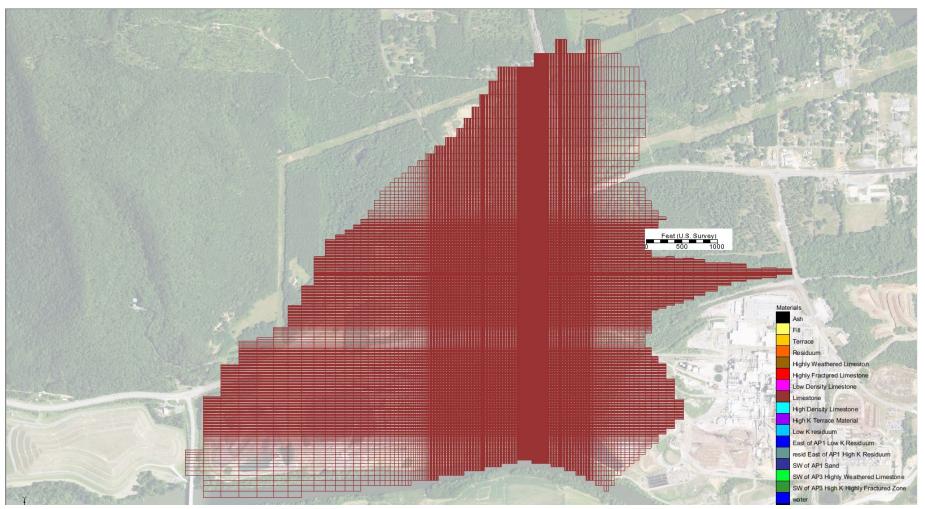


Figure 8: Layer 8 Hydraulic Conductivity Zones

Figure 9: Layer 9 Hydraulic Conductivity Zones

Boring (Installed 2017)	 Ground Surface Elevation (5 ft interval) 	Ν	Blan View of	Geologic Sections in	EVS
Boring (Installed 2015)	 Georgia Power Property Boundary 	Λ	(A-A', B-B', C-C	C', D-D', D'-D", E-E', a	nd F-F')
Boring (Installed 1976-1977)		÷.		rgia Power Company ant Hammond AP3	-
Well/Piezometer (Installed 2016)			Pla Rome	ant Hammond AP3 Floyd County, Georgia	
 Monitoring Well (Installed 2015) Well/Piezometer (Installed 2014) 	Notes:	A		_	
 Piezometer (Installed 2010) 	1. Aerial Photograph approximate date - February 2017 Source: Google Earth.		Geosy	/ntec▷	Figure
 Piezometer (Installed 1976-1977) 	Topographic Contour Source: City of Rome and Floyd County, Georgia and a site topographic map provided by Southern Company Services.			isultants	
Observation Well (Installed 1976-1977)	3. AP3-1, AP3-2, AP3-3, AP1-MW-2, AP1-MW-3, AP1-MW-4, AP3-MW-25 through AP3-MW-27, and HGWC-121 were abandoned.	0 580	Kennesaw, GA	July 2017	– 10a

N:\GA Power\Plant Hammond AP3\GIS\MXD\May_4_Model_Report\Figure10_CrossSectionKeyMap.mxd 7/31/2017 2:37:41 PM

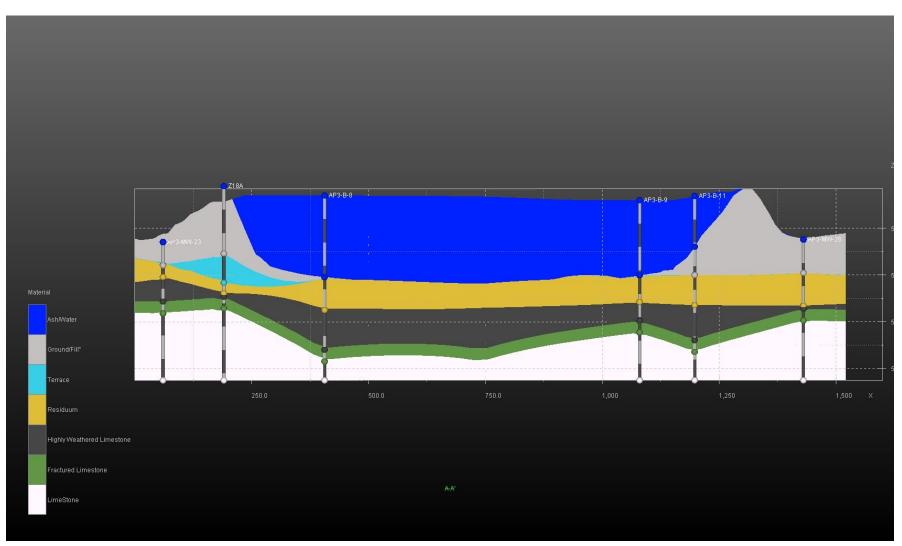


Figure 10b: EVS Cross-Section A-A'

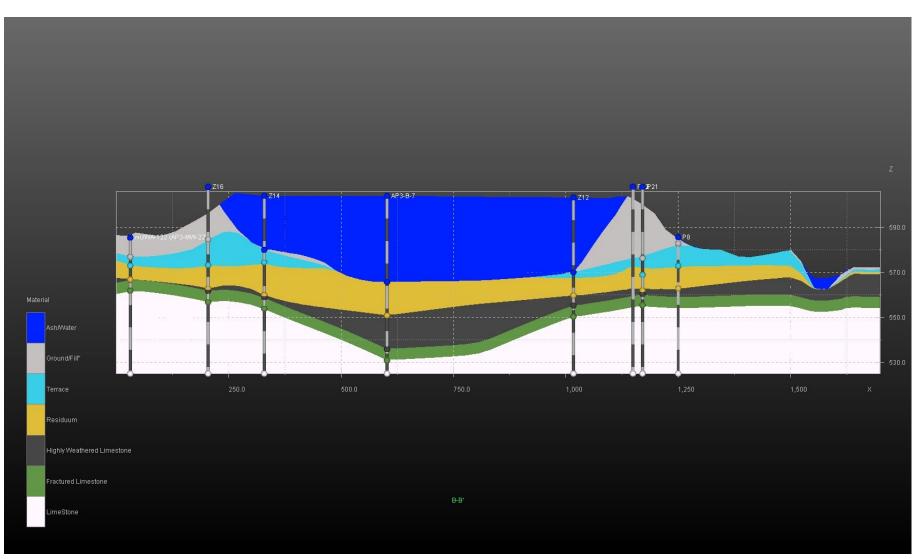


Figure 11: EVS Cross-Section B-B'

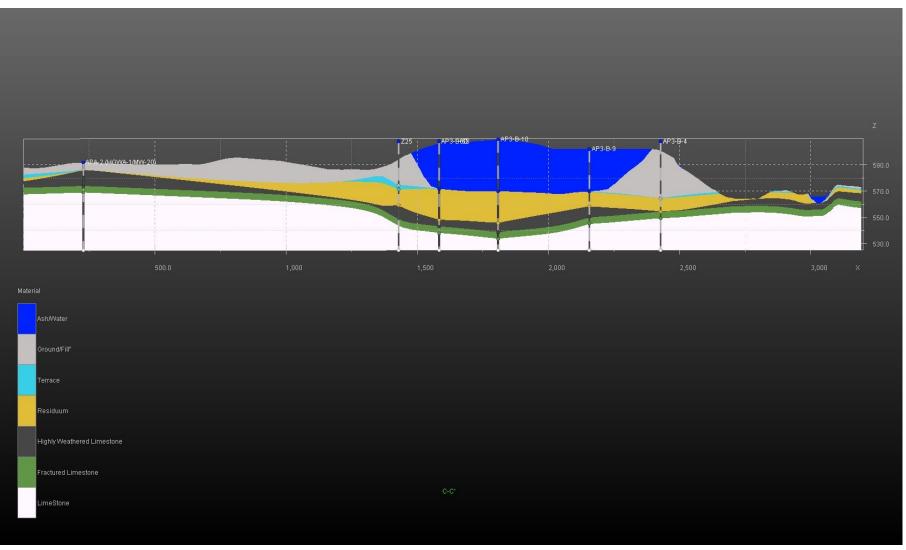


Figure 12: EVS Cross-Section C-C'

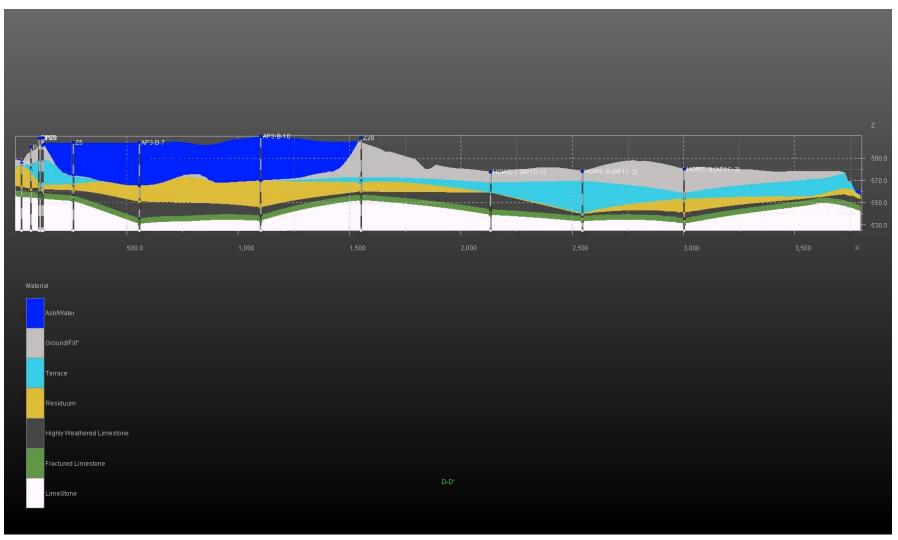


Figure 13: EVS Cross-Section D-D'

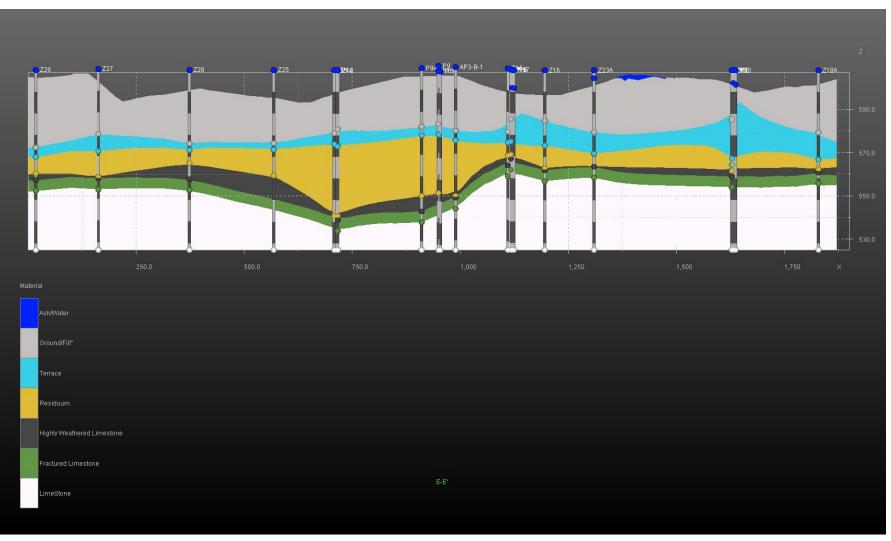


Figure 14: EVS Cross-Section E-E'

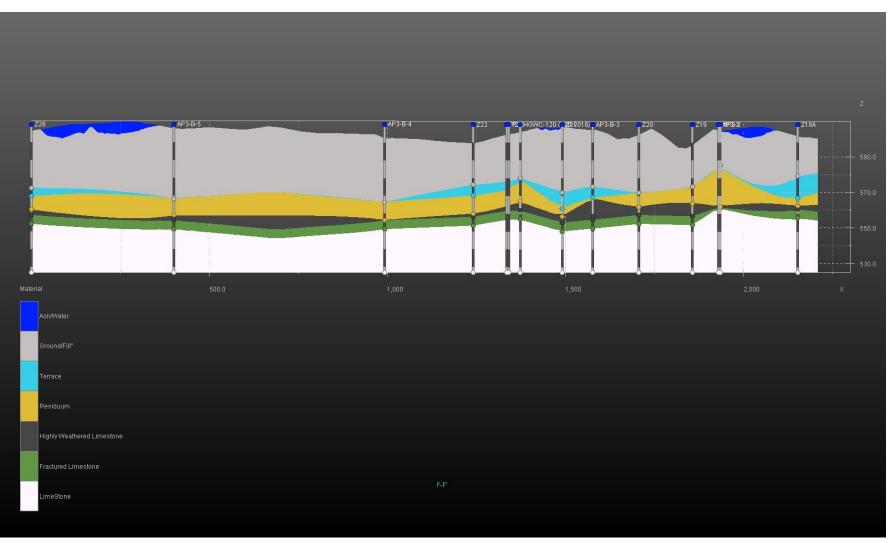


Figure 15: EVS Cross-Section F-F'

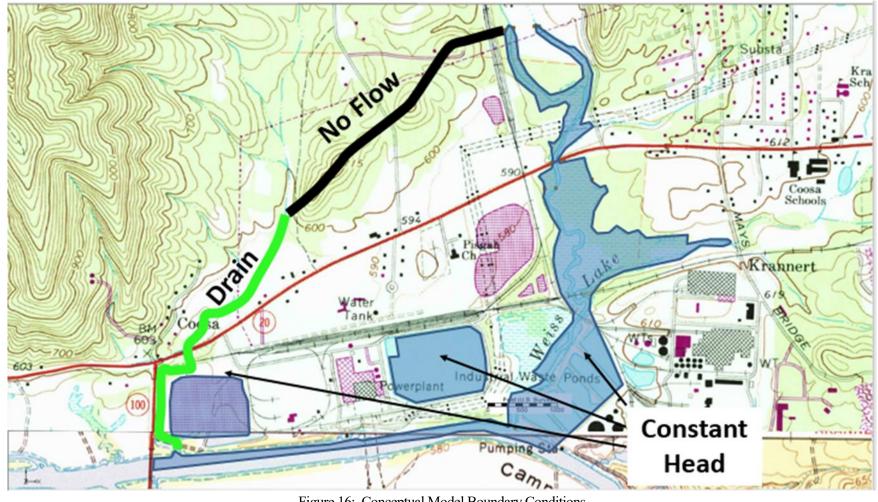


Figure 16: Conceptual Model Boundary Conditions

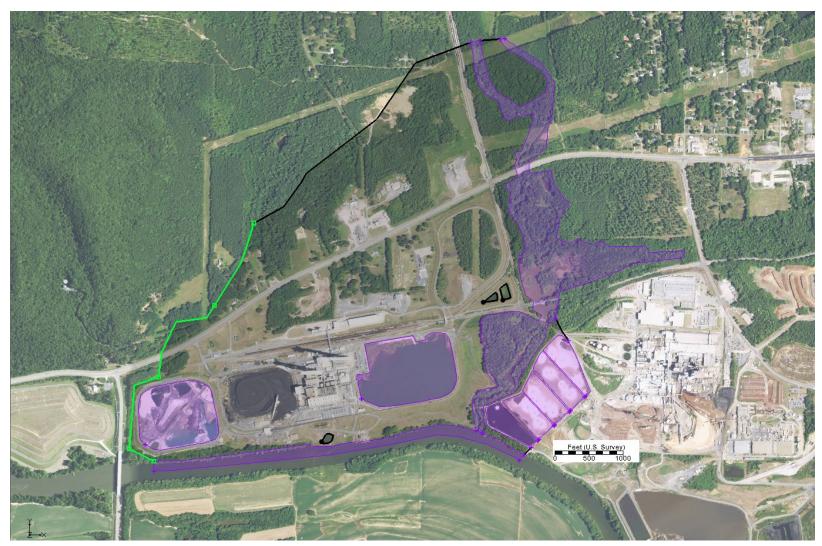


Figure 16a: Model Boundary Conditions

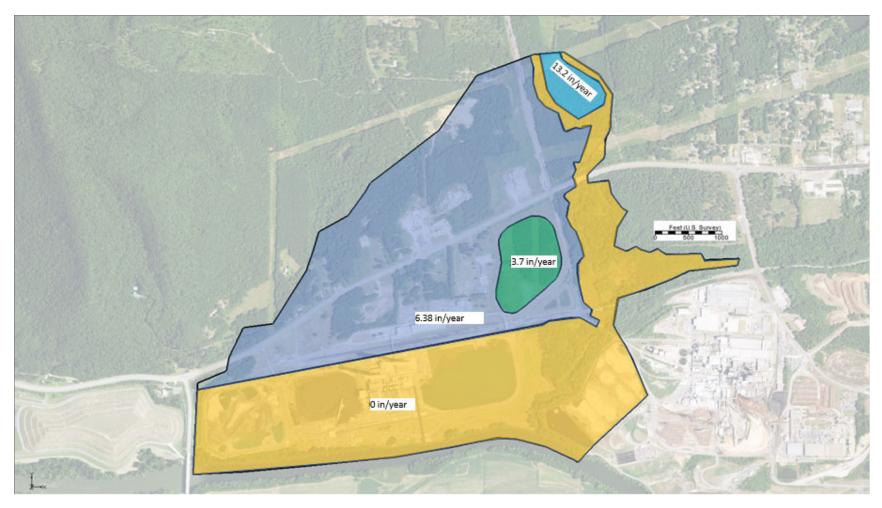


Figure 17: Model Recharge Zones

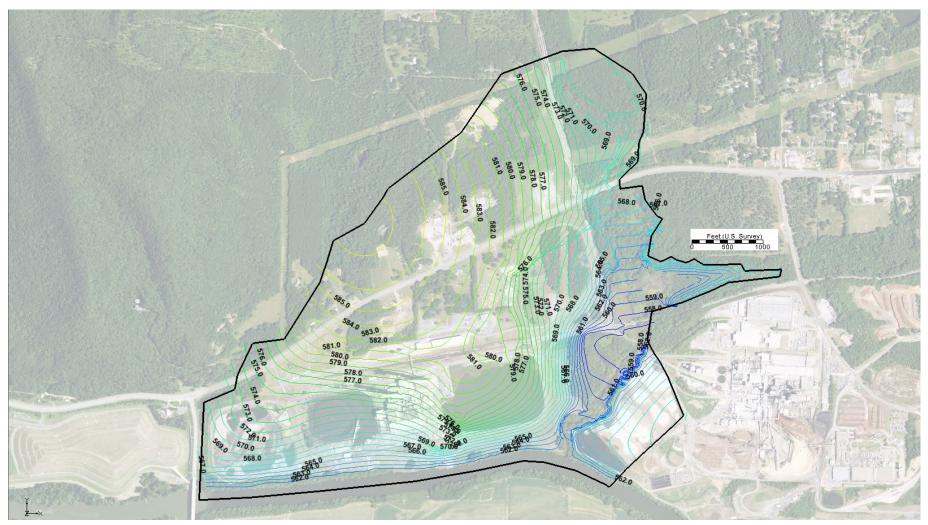


Figure 18: Modeled Groundwater Elevations for the Highly Fractured Limestone

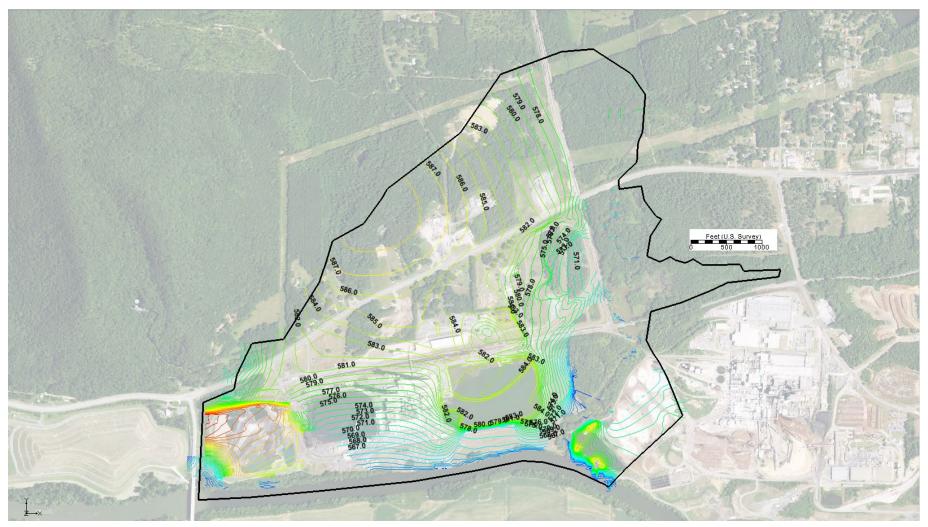


Figure 19: Modeled Groundwater Elevations for the Terrace Alluvium Material

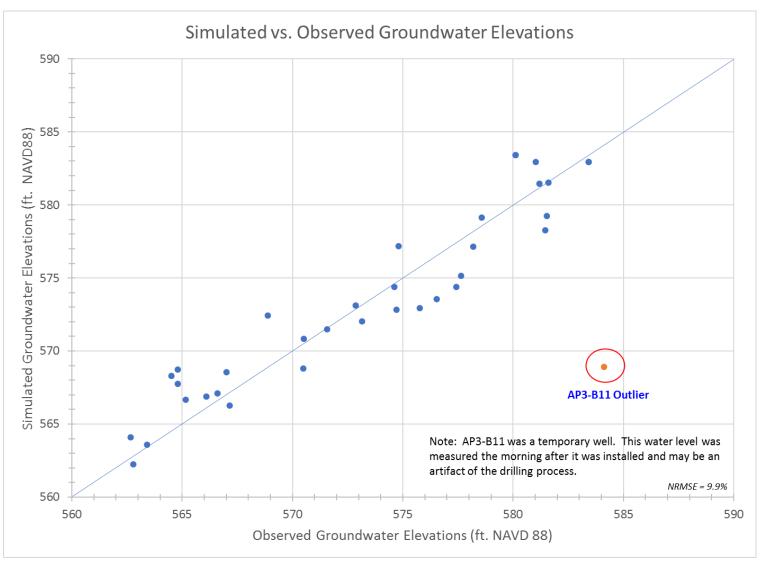


Figure 20: Simulated vs. Observed Groundwater Elevations

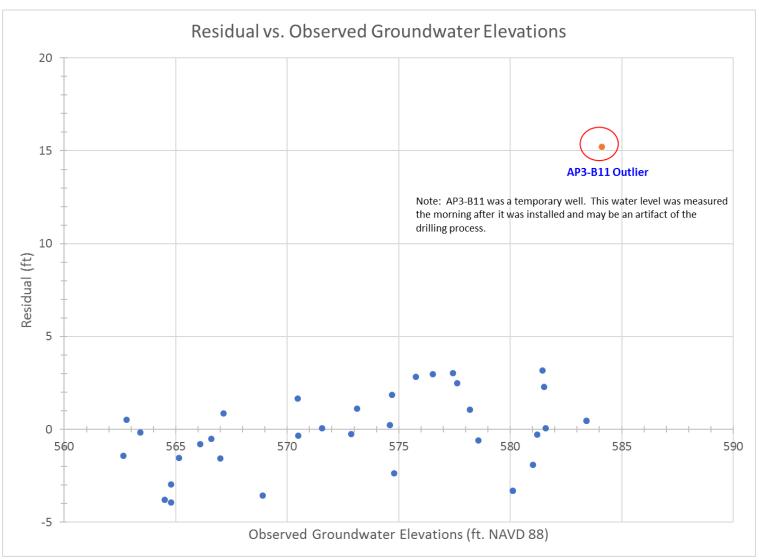


Figure 21: Residual vs. Observed Groundwater Elevations

Figure 22: Scenario 1 – Model Predicted Groundwater Elevation Contour

Figure 23: Scenario 2 – Model Predicted Groundwater Elevation Contour

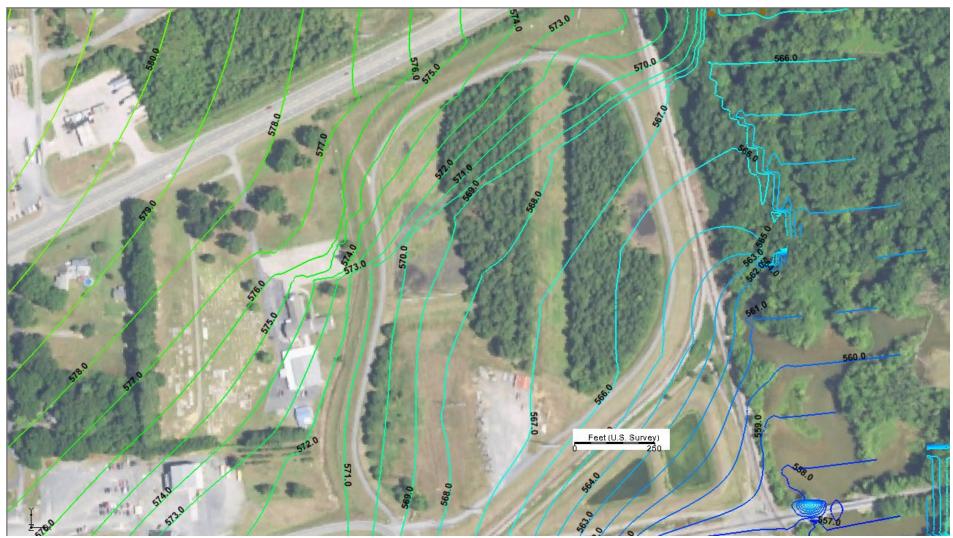


Figure 24: Scenario 3 – Model Predicted Groundwater Elevation Contour

APPENDIX G

Boring Logs for AP-3 Monitoring Well Network

	.og	g upo	lated with revised survey certified 5/19/2020.											
		SOUTHERN LOG OF TEST BORING PAGE 1 OF												
	9	50	LOG OF	TES	ST BC	ORIN	G	PAGE 1 OF 1 <u>ECS37736</u>						
	S	OUT	HERN COMPANY SERVICES, INC.				Piezometers							
	E	ART	H SCIENCE AND ENVIRONMENTAL ENGINEERING	LOC	ation _i	Plant Ha	mmond							
2			TARTED 12/3/2014 COMPLETED 12/3/2014 SUR ACTOR SCS Field Services EQUIPMENT C											
-1	DRILLED BY T. Milam LOGGED BY W. Shaughnessy CHECKED BY L. Millet ANGLE BEARING													
£1			DEPTH _29.7 ft. GROUND WATER DEPTH: DURING Well installed. Refer to well data sheet.	i	C	omp	D	ELAYED 17.1 ft. after 24 hrs.						
		GKAPHIC LOG	STRATA DESCRIPTION	COMMENTS										
		CLC CLC		PERCENT RECOVERY (RQD)										
	000		Clayey Gravel (GC)											
	000													
		$\langle \rangle$	- brown and light brown, dry, dense		SS -1	3.5-5.0	7-13-18 (31)							
		X	Silty Clay (CL)	586.32										
		X X X X	 pale gray-brown, dry, very stiff, with red and yellow- brown mottling 		SS -2	8.5- 10.0	7-10-12 (22)							
5			- brown, dry, stiff, with gray mottling			40.5	0.00							
			- blown, dry, sun, with gray mouning		SS -3	13.5- 15.0	6-6-6 (12)							
			<u>▼</u>											
	K			573.82)			Auger refusal at 18.5 ft.						
	2													
10.10						10 7	05							
			 gray and dark gray, not to highly weathered, shale seams less than 1/2 inch, shear/fracture zone fabric, 		RC -1	18.7- 25.2	95 (23)							
			near vertical bedding, water staining											
. –														
					RC	25.2-	98							
					-2	29.7	(9)							
			Bottom of borehole at 29.7 feet.	562.62				Easting and Northing in NAD 1983.						
								Elevations in NAVD 1988.						

E Log upda	ated	wit	h re	vised	sur	vey certified 5/19/2020.	
							WELL: HGWA-1
SOL							PAGE 1 OF 1
EDHA	C	0	M	PAN	IY	WELL CONSTRUCTION	<u>ECS37736</u>
						PROJECT Ash Pond Piezometers VIRONMENTAL ENGINEERING LOCATION Plant Hammond	
DATE ST	ART	ΈD	_12	2/3/201	4	COMPLETED <u>12/3/2014</u> SURF. ELEV. <u>592.32</u> COORDINATES: N	1550423.32 E:1940770.00
<				rvices EQUIPMENT CME 550 METHOD Hollow Stem Auger; HQ R			
5						LOGGED BY W. Shaughnessy CHECKED BY L. Millet ANGLE	
₹						_ GROUND WATER DEPTH: DURING COMP DELAYED to well data sheet.	17.1 ft. after 24 hrs.
	vve		151.01				
HAM							COMMENTO
BOREHO DATA			Тор о	of casing			COMMENTS
(O)eC	Ĭ	DEPIH				urface: otective aluminum cover with bollards; 4-foot square concrete pad	
ELEV. St		ם				ELEV. [DEPTH]	
			5. V	5		-Surface Seal: concrete	
OKI			, °. \/7,			590.32 [2.0]	
	S.		\gg		\otimes		
	A	2	\otimes			Well: 2" OD PVC (SCH 40)	
<u>586.32</u>	¥.					←Annular Fill: Cement-Bentonite Grout (2 - 94lbs. bags, 22 gal.)	
			\sum		\mathbb{Z}	582.42	
	A	7	~//			582.42 [9.9]	
		1			-	Annular Seal: 3/8 bentonite pellets (1 - 50lbs. bucket)	
		:					
MPC		15				577.72 [14.6]	
SHOUPS		•••••••••••••••••••••••••••••••••••••••					
5 573. <u>82</u>		· · · · · · · · · · · · · · · · · · ·				 Filter: #1A silica filter sand (2 - 50lbs. bags) 	
	44;	50			-	573.12 [19.2]	
			=			[13.2]	
		•••					
	-1	25				—Screen: 10 ft. 0.010" slot pre-pack	
=3EE DAI ABASE.GUI - ///8/13 13:11							
ມ ຣີ 562.62			E			563.12 —Sump:0.40 ft. 562.72	
		•				Backfill:Silica Sand	Easting and Northing in NAD 1983. Elevation in NAVD 1988.
Z WELL CONSTRUCTION KCKU							
01Z							
Ň							

Log updated with revised survey certified 5/19/2020.

PROJECT: SCS Hammond PROJECT NUMBER: 1545812 DRILLED DEPTH: 27.00 ft LOCATION: Rome, GA

RECORD OF BOREHOLE HGWA-2 DRILL RIG: Pro Sonic 150 DATE STARTED: 12/2/15 DATE COMPLETED: 12/2/15 DATE COMPLETED: 12/2/15

	z	SOIL PROFILE		1		S	AMPLE	:5		
(£)	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV.	SAMPLE NO.	ТҮРЕ	REC	MONITORING WELL/ PIEZOMETER DIAGRAM and NOTES	WELL CONSTRUCTION DETAILS
0 -	ш — 585	0.00 - 3.00 CLAY; light brown/grey silty clay, trace organic material, soft		5 /////	DEPTH (ft)	SAM				WELL CASING Interval: -3'-15'
-	_	3.00 - 7.00	CL		582.29 3.00	-			Portland Type I/ Type – II/ Gel mix – –	Material: Schedule 40 PV Diameter: 6" Joint Type: Screw/Flush
5-		SILTY CLAY; grey/orange/light brown silty clay, mottled, stiff to very stiff, some black streaking from 3'-4', moist	CL		3.00				-	SURFACE CASING Interval: N/A Material: N/A Diameter: N/A
-	_	7.00 - 8.00 CLAY; light brown/orange/grey sandy, gravelly clay, mottled,	CL		578.29 7.00 577.29				3/8" Bentonite – Pellets	WELL SCREEN Interval: 15'-25' Material: Schedule 40 P∖ Diameter: 2'
	- - 575	moist 8.00 - 12.00 SANDY GRAVEL; orange/light brown sandy gravel, coarse grained, sub-angular gravel,	GP		8.00				Portland Type I/ Type – II/ Gel mix – – – 3/8" Bentonite – Pellets – – –	Slot Size: 0.010" End Cap: Schedule 40 P' FILTER PACK Interval: 12.5'-25' Type: #1 sand/ Prepack
-	-	12.00 - 17.00 light brown/orange sandy gravel, coarse grain, loosely compacted, moist		00°	12.00	-			-	Filter Filter Filter PACK SEAL Interval: 3'-12.5' Type: 3/8" Bentonite Pell
_ 15 —	- 570	inost								ANNULUS SEAL Interval: 0'-3' Type: Portland Type I/Ty II/Gel Mix
-		17.00 - 18.00 GRAVELLY CLAY; orange/light brown gravelly clay, sub-angular gravel, moist	CLG		568.29 17.00 567.29 18.00	(567.23)		#1 sand	WELL COMPLETION Pad: 4'x4'x4" Protective Casing: Anodi Aluminum
- 20 -	- 565 	18.00 - 24.00 SANDY GRAVEL; orange/light brown sandy gravel, coarse grained, trace clay lenses, wet	GP						0.010" slot	DRILLING METHODS Soil Drill: 6-inch diameter Sonic Rock Drill: 6-inch diamete Sonic
-	_				561.29					
25 —	- 560 	24.00 - 26.00 SILT; orange/light brown layered silt, soft, wet 26.00 - 27.00	ML		24.00 559.29 26.00	-			BACKFILL	
-	- '	grey silt with trace limestone shale and clay, foliated, soft, wet Boring completed at 27.00 ft			558.29	-				
30 -	- 555 -								-	
-	-								-	
35 -									-	
- - 40 -	- - 545									-
-	-								-	
 45 —	-								-	
		LE: 1 in = 5.5 ft Easting and Northing in NAD 1983. COMPANY: Cascade			SPECT				Illooly rkman, P.G.	Golder

Log updated with revised survey certified 5/19/2020.

PR DR	DJECT	SCS Hammond NUMBER: 1545812 DEPTH: 42.00 ft I: Rome, GA	50 5	NO EAS GS	DLE RTHING STING: ELEVA C ELEVA	6: 1,54 1,939, TION:	9,794. 833.39 585.2	.41 9 23 ff		DEP DAT	ET 1 of 1 TH W.L.:2.68 E W.L.:12/2/15 E W.L.:07:30
		SOIL PROFILE				S	AMPLE	S			
DEPTH (ft)	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH	SAMPLE NO.	ТҮРЕ	REC	MONITORING PIEZOMET DIAGRAM and I	ER	WELL CONSTRUCTION DETAILS
0		0.00 - 5.00 SANDY CLAY; grey/brown/orange mottled sandy clay, fine grained, medium density, stiff, moist	CLS								WELL CASING Interval: Material: Schedule 40 PVC Diameter: 6" Joint Type: Screw/Flush SURFACE CASING Interval: N/A
5 — 10 — 	- 580 - - - - - 575 -	5.00 - 13.00 CLAYEY GRAVEL; orange/brown clayey gravel with some sand, poorly sorted and angular pieces. gravel becomes more rounded at 9 feet, medium density compaction	GC		580.23 5.00	-					Material: N/A Diameter: N/A WELL SCREEN Interval: 32'-42' Material: Schedule 40 PVC Diameter: 2' Slot Size: 0.010" End Cap: Schedule 40 PVC FILTER PACK Interval: 29'-42' Type: #1 sand/Prepack Filter FILTER PACK SEAL Interval: 27'-29'
- - 15	- - 570	13.00 - 14.00 wet around 13.5 feet 14.00 - 17.00 SANDY GRAVEL; brown/grey poorly sorted, well rounded sandy gravel, wet	GC		13.00 571.23 (14.00	571.19)		Portland Type I/ Type – II/ Gel mix		Type: 3/8" Bentonite Pellets ANNULUS SEAL Interval: 0'-27' Type: Portland Type I/Type
	- - - - 565 -	17.00 - 25.00 orange/brown sandy gravel, well rounded, poorly sorted, wet			568.23	-					II/Gel Mix WELL COMPLETION Pad: 4'x4'x4" Protective Casing: Anodized Aluminum DRILLING METHODS Soil Drill: 6-inch diameter Sonic Rock Drill: 6-inch diameter Sonic
	- - 560 - - - -	25.00 - 26.00 some larger rock fragments and coarse grained sand 26.00 - 31.00 CLAY; brown/grey sandy gravel, changes to grey weathered limestone and clay, medium density, firm, moist	CL		26.00	-					
-	-	31.00 - 37.00 PARTIALLY WEATHERED ROCK; partially weathered limestone and trace clay, angular rock fragments, clay is mottled light and dark grey, wet	PWR		31.00	-					
35 - - - 40 -	550 545 	37.00 - 42.00 partially weathered dark grey shaly limestone, poorly sorted and angular, some gravel, bottom 3 inches are solid limestone, wet (saturated)			548.23 37.00 543.23	-			#1 sand 0.010" slot screen		
-	-	Boring completed at 42.00 ft				†					
- - 45	-									-	

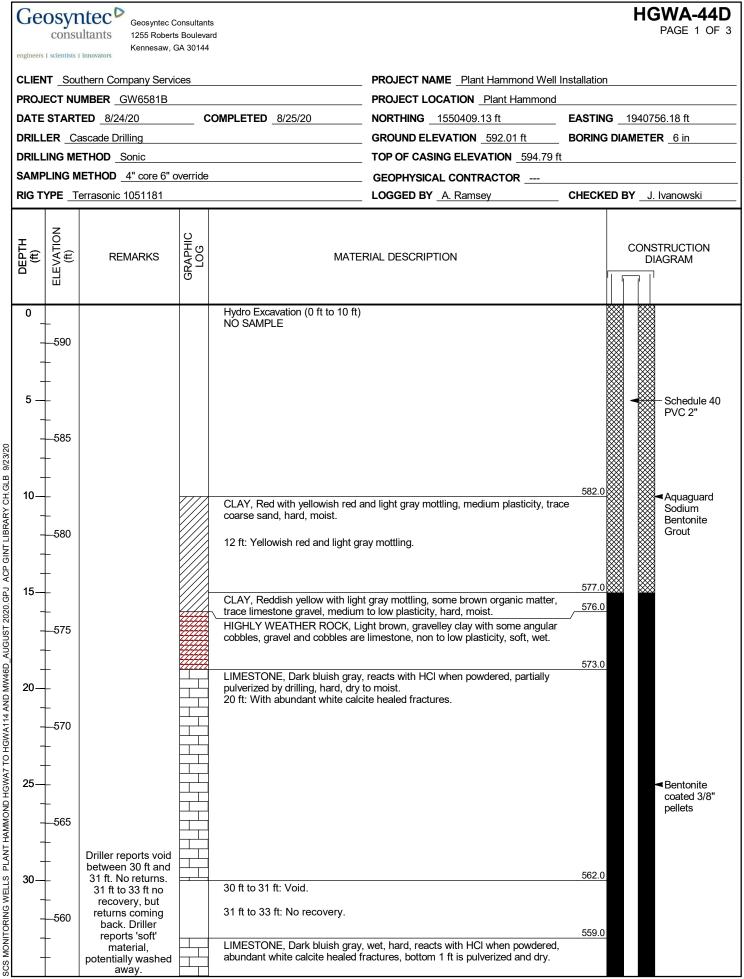
BOREHOLE RECORD HAMMOND BORING LOGS.GPJ PIEDMONT.GDT 3/1/16

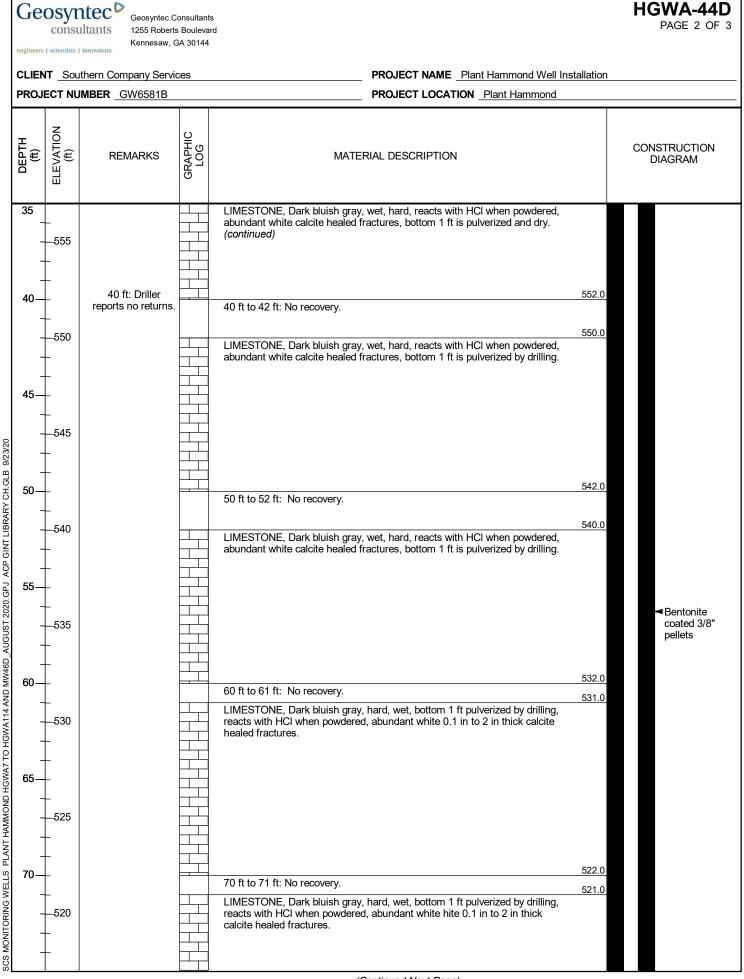
LOG SCALE: 1 in = 5.5 ft

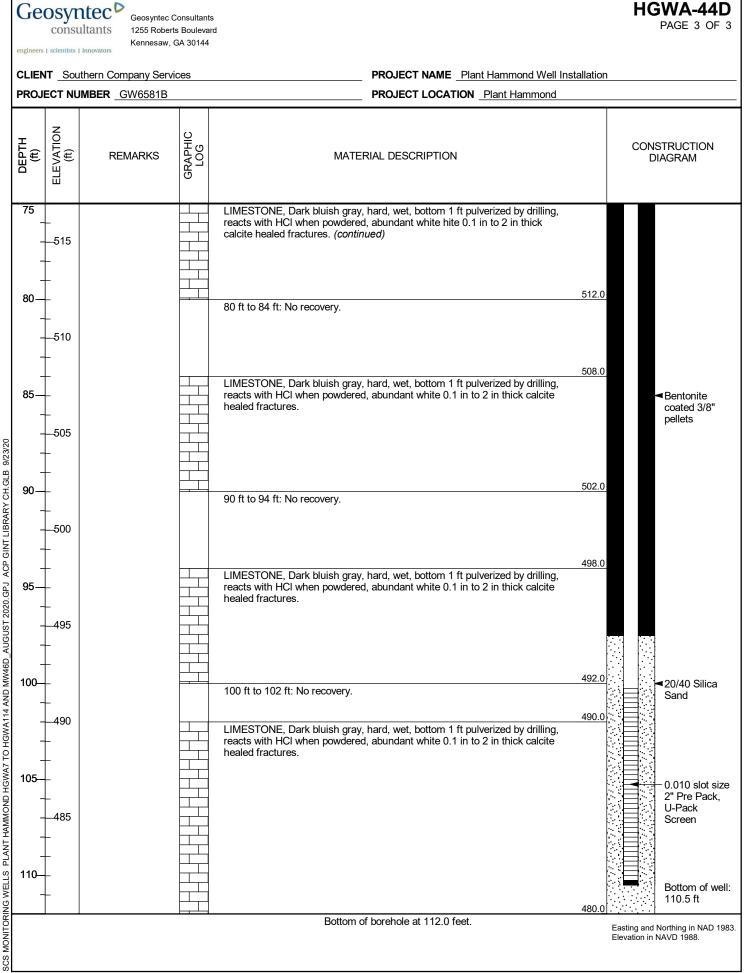
DRILLER: Tom Ardito

DRILLING COMPANY: Cascade

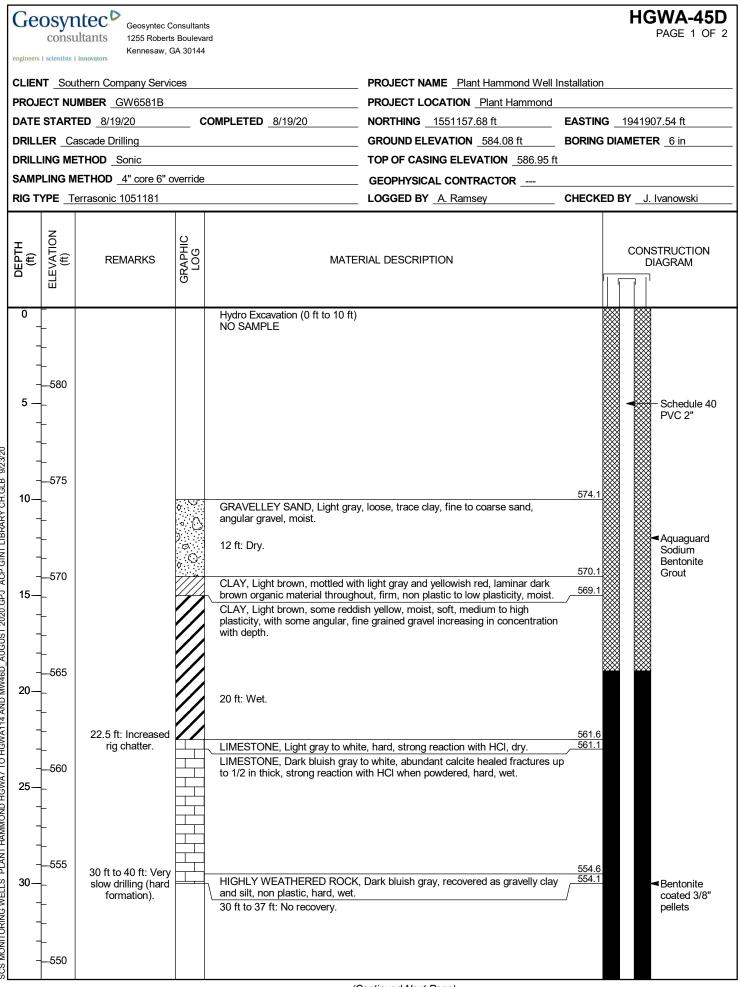
Easting and Northing in NAD 1983. Elevations in NAVD 1988. GA INSPECTOR: James Mullooly CHECKED BY: Rachel P. Kirkman, P.G. DATE: 2/24/16

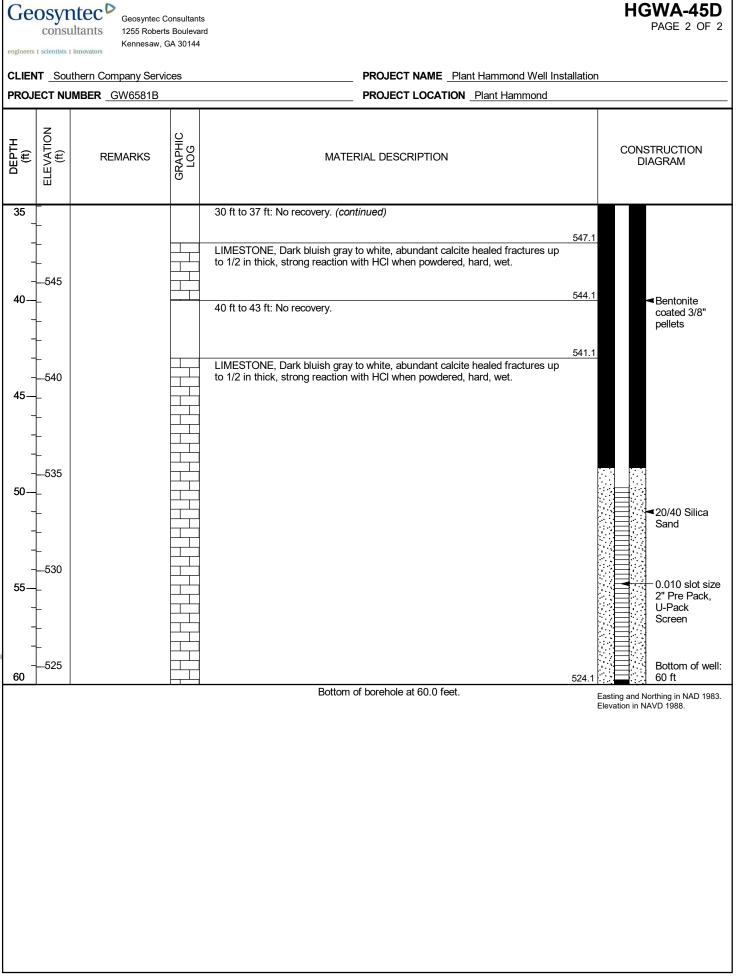

			Geosyntec C Itants 1255 Robert Kennesaw, G	s Bouleva	ard		-	VA-43D AGE 1 OF 2				
	CLIEN	T Sou	thern Company Servi	ces		PROJECT NAME Plant Hammond Well In	nstallation					
			MBER GW6581B			PROJECT LOCATION Plant Hammond						
				c	COMPLETED 8/26/20		EASTING 1940753	.80 ft				
			ascade Drilling			GROUND ELEVATION 592.08 ft	BORING DIAMETER	6 in				
			THOD Sonic									
			IETHOD 4" core 6" of	override								
	RIG TYPE _ Terrasonic 1051181					LOGGED BY _A. Ramsey	CHECKED BY _ J. Ivanowski					
	DEPTH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	RIAL DESCRIPTION		RUCTION BRAM					
SCS MONITORING WELLS PLANT HAMMOND HGWAY TO HGWAT14 AND MW460 _AUGUST 2020.GFJ ACP GINT LIBRARY CH.GLB 9/23/20		- - - - - - - - - - - - - - - - - - -			sand, hard, moist. CLAY, Reddish yellow with ligh material, trace limestone gravel 17 ft: Trace of limestone gravel HIGHLY WEATHERED ROCK clay with trace limestone cobble		<u>582.1</u> <u>576.6</u> <u>573.1</u> <u>569.1</u> n	Schedule 40 PVC 2" Aquaguard Sodium Bentonite Grout				
scs							562.1					


Geosyntec[▶] HGWA-43D Geosyntec Consultants PAGE 2 OF 2 consultants 1255 Roberts Boulevard Kennesaw, GA 30144 engineers | scientists | innovators PROJECT NAME Plant Hammond Well Installation CLIENT Southern Company Services PROJECT NUMBER GW6581B PROJECT LOCATION Plant Hammond ELEVATION (ft) GRAPHIC LOG DEPTH (ft) CONSTRUCTION REMARKS MATERIAL DESCRIPTION DIAGRAM 30 30 ft to 34.5 ft: No recovery. 30 ft to 50 ft: No voids reported. -560 557.6 LIMESTONE, Grayish blue to white, hard, dry, some white calcite healed 35 fractures, 1 in clay filled fractures, 38 ft to 39 ft pulverized by drilling, powder reacts with HCl, wet. -555 40 Bentonite 40 ft: Up to 1 in thick calcite healed fractures. coated 3/8" pellets 550 548.1 44 ft to 50 ft: No recovery. 45 545 542.1 50 20/40 Silica LIMESTONE, Gravish blue to white, hard, dry, up to 1 in thick calcite healed fractures, trace 1 in clay filled fractures, mostly pulverized by drilling, powder Sand reacts with HCI. 540 0.010 slot size 2" Pre Pack, U-Pack Screen 55 535 Bottom of well: 58.25 ft 533.8


Bottom of borehole at 58.3 feet.

Easting and Northing in NAD 1983. Elevation in NAVD 1988.


SCS MONITORING WELLS PLANT HAMMOND HGWA7 TO HGWA114 AND MW46D_AUGUST 2020.GPJ_ACP GINT LIBRARY CH.GLB_9/23/20



HGWA-44D

SCS MONITORING WELLS PLANT HAMMOND HGWA7 TO HGWA114 AND MW46D AUGUST 2020.GPJ ACP GINT LIBRARY CH.GLB 9/23/20

) L	og up	dated with revised survey certified 5/19/2020.											
1						BORING HGWA-122							
	SO	UTHERN LOG OF TES	ST B	ORIN	G	PAGE 1 OF 1 <u>ECS37736</u>							
		THERE'S COMPAREMENT SERVICES, INC.		Ash Pond Plant Ha									
		TARTED _11/20/2014 COMPLETED _11/20/2014 SURF. ELI	EV 585 0	А	COORDINA	TES: N:1551251 42 E:1941887 11							
1		ACTOR SCS Field Services EQUIPMENT CME 550											
: I	DRILLED BY T. Milam LOGGED BY W. Shaughnessy CHECKED BY L. Millet ANGLE BEARING BORING DEPTH 25.2 ft. GROUND WATER DEPTH: DURING 15 ft. COMP. DELAYED 11.1 ft. after 100 hrs.												
í.		Well installed. Refer to well data sheet.			0								
	GRAPHIC LOG	STRATA DESCRIPTION	SAMPLE TYPE NUMBER	SAMPLE DEPTH (ft.)	BLOW COUNTS (N-VALUE) PERCENT RECOVERY	COMMENTS							
		ELEV	, /S	SA	(RQD)								
		Clayey Sand (SC)				-							
		- yellow-brown, dry, medium dense, medium to coarse grain, with yellow-red mottling 577.04	SS -1	3.5-5.0	3-7-5 (12)								
		Lean Clay (CL) - yellow-brown, damp, stiff, no to low plasticity, with red- yellow mottling, some sand	SS -2	8.5- 10.0	7-7-5 (12)								
		572.04	Ł										
L		Fat Clay (CH) - brown, wet, soft, gravelly, angular gravel, weathered ∑ bedrock	SS -3	13.5- 15.0	2-2-1 (3)								
		566.74				August 1 - 1 - 1 - 0 - 0 - 6							
			RC -1	18.3- 20.2	89 (21)	Auger refusal at 18.3 ft.							
		- gray and dark gray, few weathered shale seams 1/8 to 1/4 inch thick, strong HCI reaction											
		- shale seams thicker (up to 1 inch thick) and less weathered	RC -2	20.2- 25.2	96 (24)								
	<u><u></u></u>	555.84	Ļ										
		Bottom of borehole at 25.2 feet.				Easting and Northing in NAD 1983. Elevation in NAVD 88.							

	og updated.	with r	evised si	urvey certified 5/19	9/2020.				
8 Z d d									WELL: HGWA-122
HAMIMUND	SOUTI			Y		CORD	OF RUCTION		PAGE 1 OF 1 <u>ECS37736</u>
AIEU	SOUTHER		MPANY	SERVICES, INC.		PROJEC	T Ash Pond Piezoi	meters	
PIEZ/UPU/					LENGINEERING	LOCATIO	N Plant Hammono	t	
í.					0 <u>11/20/2014</u> SUI				1551251.42 E:1941887.11
<									BEARING
≦				er to well data shee					
	BOREHOLE DATA	Щ Тор	o of Casing E		WELL DATA	N			COMMENTS
				Surface: protective aluminum	m cover with bollards	; 4-foot squa	are concrete pad		
110		DE					•	ELEV.	
	ELEV. Strata	<u>مرتب</u>]				[DEPTH]	
				Surface Seal:	concrete			583.04	
								[2.0]	
				Well: 2" OD P	/C (SCH 40)				
	70.04	<u>n</u>		Annular Fill: C	ement-Bentonite Gro	ut (2 - 94lbs	. bags, 22 gal.)		
	79.04					,			
L L								576.64	
		_		3				[8.4]	
5	74.04	2		-Annular Seal:	3/8 bentonite pellets	(1 - 50lbs. b	ucket)		
	-						-	573.34	
ERAL		••••		•				[11.7]	
D D					a filter sand (2.5 - 50	• •		570.54	
AFC		12						[14.5]	
	67.04								
25	67.04								
- 9.WO		- 5		Screen: 10 ft.	0.010" slot pre-pack				
2									
11.61 61/0/1 -									
- 100									
i 55	59.84	1 22		Sump:0.40 ft.				560.54 [24.5]	
ABA				Backfill:Silica	Sand			560.14	Easting and Northing in NAD 1983.
Η									Elevation in NAVD 88.
- (MD									
Ę,									
2012 WELL CONSTRUCTION RCKD (NU CUM) - ESEE DATABAS									
2									
710									

						BORI	NG HGWC-12				
S		BC BC	RING LOG				PAGE 1 OF				
SO		N COMPANY SERVICES, INC.	PROJECT Plant Hammond								
EAI	RTH SC	IENCE AND ENVIRONMENTAL ENGINEERING	LOCATION Rome, 0	GA							
		TED 6/27/2016 COMPLETED 6/27/2016 SUI			ATES: <u>N: 155</u>	1067.24	E: 1942926.62				
		T. Ardito LOGGED BY _W. Newton PTH _67 ft. GROUND WATER DEPTHDURING				42 6 ft					
		in Engineering Log at 47 ft. Well installed. Refer to well									
 _	<u>ں</u>										
иет н (#)	GRAPHIC LOG	MATERIAL DESCRIPTION		Natura	I Gamma		WELL DATA				
Ē	GR		Elev:		- 10	Тор о	of casing Elev. = 605.82 fl				
	<u> <u> </u></u>		602.83	75	150 225						
	<u>1</u> <u>1</u> <u>1</u>	Topsoil (TOPSOIL)				.5.	Surface Seal				
	<u></u>		559.83								
		Lean Clay (CL)					Ň.				
5											
		Gravelly Lean Clay (CLG) mottled))				
•							×.				
10											
							×.				
15	ø/ø						×.				
		Low Plastic Organic Silt or Clay (OL)									
		Lean Clay (CL)					×.				
20							×.				
							Annular Fill				
)))				
25							×				
		Coal Combustion Byproduct (ASH) Lean Clay (CL)	575.83								
0		Graveliy Lean Clay (CLG))))				
			571.83				×				
							×				
35							Ň				
		Gravelly Lean Clay (CLG) Fat Clay (CH)	565.83								
		· · · · · · · · · · · · · · · · · · ·))				
40							\bowtie				

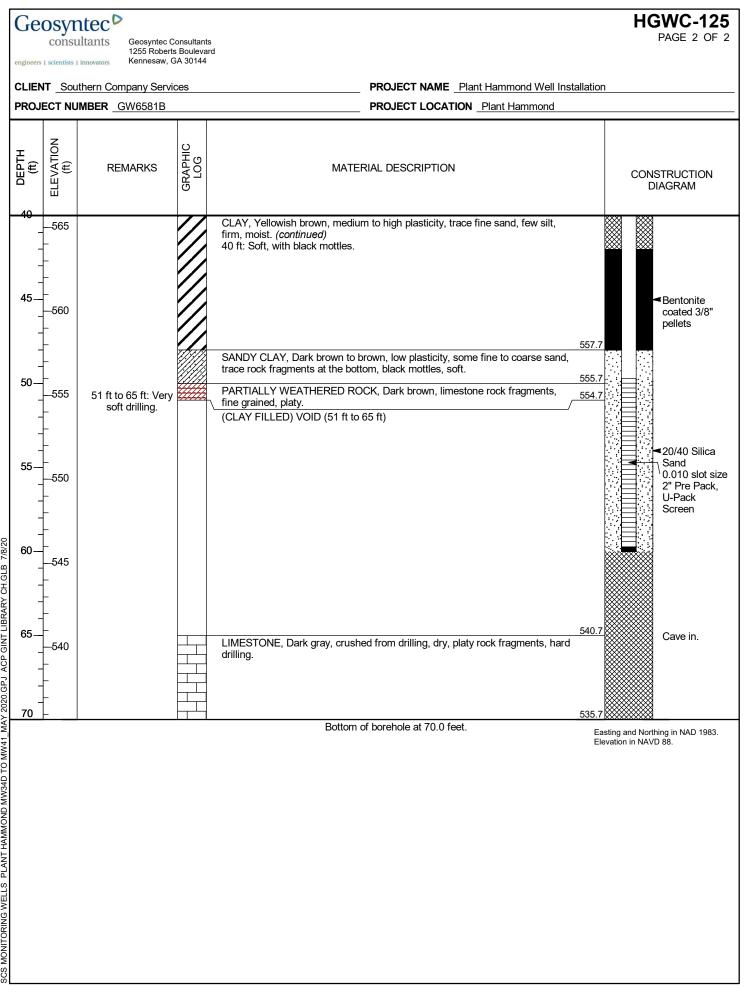
BORING LOG

BORING HGWC-120

PAGE 2 OF 2

SOUTHERN COMPANY SERVICES, INC. EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING PROJECT Plant Hammond

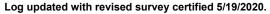
LOCATION Rome, GA

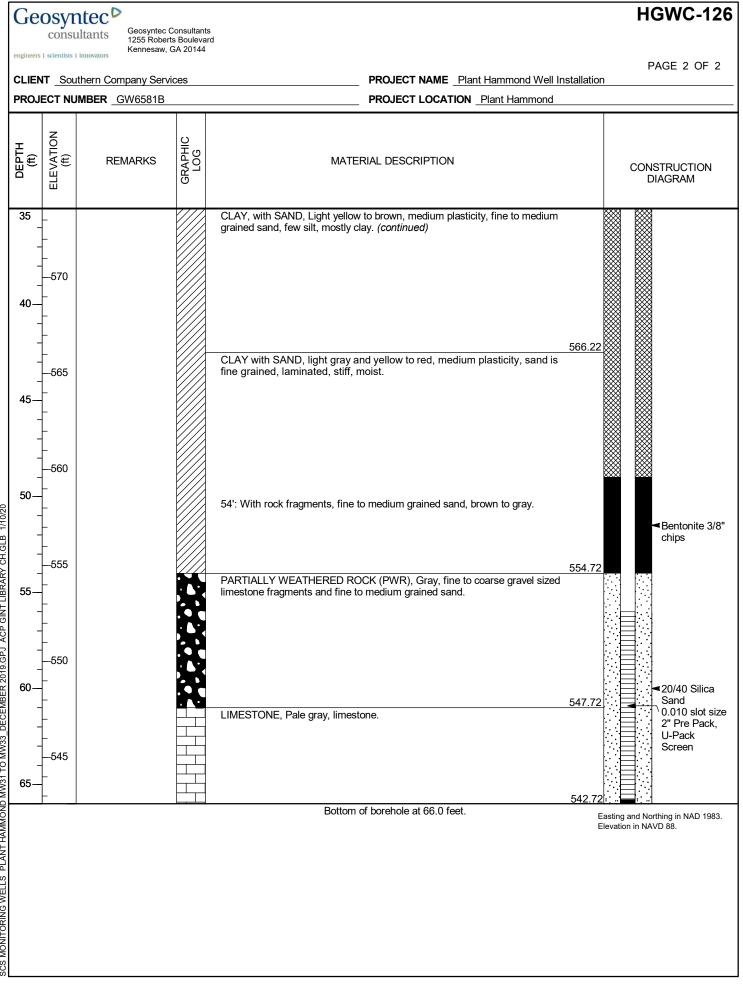

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	N	atural Gar	nma	WELL DATA
		Elev:	75	150	225	Top of casing Elev. = 605.82 (CONTINUED)
45		Fat Clay (CH)(Con't)				Annular Fill
50		Z 555.83 DOLOSTONE CLS 552.83 552.83	-			Annular Seal
SYGINT/PROJECTS/HAMMOND AP-3.GP		548.83 DOLOSTONE	-			Filter Pack Screen top elevation: 548.83
3LIC/DOCUMENTS/BENTLE		535.83 Bottom of borehole at 67.0 feet.				Screen bottom Elevation: 538.83
SIMPLE GEOLOGY WITH WELL - ESEE DATABASE.GDT - 1/4/17 08:35 - C:,UUSERSIPUBLICIDOCUMENTSIBENTLEYGINTIPROJECTSIHAMMOND AP-3.GPJ						Easting and Northing in NAD 1983. Elevation in NAVD 88.

Log u	og updated with revised survey certified 5/19/2020.									
E) RM	Atla	00 Win anta, G	A 303	Rd Ste 1500W 39 3-486-2700	WELL NUMBER HGWC-121A PAGE 1 OF 1				
CLIEN	T Sou	thern C	Compa	iny Sei	rvices, Inc.	PROJECT NAME Plant Hammond				
					COMPLETED _7/17/17					
					hern Comparny Services, Inc m Auger 2"	$\overline{\nabla}$ AT TIME OF DRILLING 13.20 ft				
					CHECKED BY	AT END OF DRILLING				
	Щ	%								
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY	U.S.C.S.	GRAPHIC LOG	MAT	ERIAL DESCRIPTION WELL DIAGRAM Top of casing elevation: 584.69 Elev: 582.31 Casing Type: 2" PVC				
					(CL-ML) Silty CLAY: reddish wit medium stiff, low plasticity, dry	h yellow mottling, some large angular gravel,				
	∦ ss	70	CL-		medium sun, iow plasticity, dry					
	\wedge	10	ML							
5	/ }		<u> </u>		5.0	577.31				
	\/				plasticity, dry	mottling, some gravel, medium dense, low				
	∦ ss	63	CL							
	()									
_ 10	$\left(\right)$		+		10.0(CL) CLAY: gray, some coarse	sand, medium dense, moderate plasticity, moist				
	$\backslash / $				Ā					
) ss	80	CL		Σ					
15	/ \									
					(CL) SAA					
	∦ ss	78	CL							
	\wedge	10								
20	/									
	$\backslash /$				(CL) SAA, wet	✓ bentonite				
	∦ ss	53	CL							
	\mathbb{N}					· · · · · · · · · · · · · · · · · · ·				
25	\rightarrow		+		25.0(CL) CLAY, gray/brown, some g	<u>557.31</u>				
	$\backslash $					Top screen elevation: 556.71				
	∬ ss	32	CL							
30	/ \				30.0	552.31 20/30 sand				
					No recovery	UPACK				
	∦ ss	0				screen				
-	\mathbb{N}^{33}									
35	/ \				35.0	547.31 Bottom screen 546.71 elevation: 546.71				
			1	1	Bottom	of borehole at 35.6 feet. Easting and Northing in NAD 1983.				
						Elevation in NAVD 88.				

	og up	dated with revised survey certified 5/19/2020.										
							BORING HGWC-124					
	SO	LOG OF	TES	БТ ВС	ORIN	G	PAGE 1 OF 1 <u>ECS37736</u>					
		THERN COMPANY SERVICES, INC. I'H SCIENCE AND ENVIRONMENTAL ENGINEERING			<u>sh Pond</u> Plant Hai							
	DATE	STARTED <u>11/13/2014</u> COMPLETED <u>11/13/2014</u> SU	RF. ELE	V. 579.	.80	COORDINA	TES: N:1551624.93 E:1942781.05					
-		CACTOR SCS Field Services EQUIPMENT C										
21	DRILLED BY T. Milam LOGGED BY W. Shaughnessy CHECKED BY L. Millet ANGLE BEARING BORING DEPTH 32.5 ft. GROUND WATER DEPTH: DURING 15 ft. COMP. DELAYED 14.2 ft. after 24 hrs.											
	NOTES	Well installed. Refer to well data sheet.			SAMPLE DEPTH (ft.)							
	GRAPHIC LOG	STRATA DESCRIPTION	COMMENTS									
		Fill (ML)	ELEV.									
		- red-yellow, dry, very stiff, clayey, with pale brown		▼ SS		8-8-9						
	<u>-</u>	mottling		-1	3.5-5.0	(17)						
		Silty Clay (CL)	573.80									
		- brown-yellow and brown, dry, stiff, with black mottling		SS -2	8.5- 10.0	5-3-5 (8)						
		$\underline{\Psi}$ - brown-yellow and brown, dry, medium stiff, with black		SS	13.5-	2-3-2						
		mottling		-3	15.0	(5)						
		Clayey Gravel (GC)	562.80									
		- brown, wet, very loose, with pale yellow-brown mottling		SS	18.5-	2-2-2						
				-4	20.0	(4)						
			558.10				Auger refusal at 21.7 ft.					
				RC -1	21.7- 25.1	94 (0)						
	8	inclined congrates at shale bodding planes, brown red				(-)						
		 - inclined, separates at shale bedding planes, brown-red iron staining, strong to weak HCl reaction, medium grained pyrite (Dark gray and gray Formation) 										
				RC -2	25.1- 30.1	96 (36)						
Ľ.												
		-										
		Bottom of borehole at 32.5 feet.	547.30				Easting and Northing in NAD 1983.					
							Elevation in NAVD 88.					

	Log up	dated	d wi	th re	vised s	surv	vey certified 5/19/2020.	
D PZ								WELL: HGWC-124
	SO					Y	RECORD OF WELL CONSTRUCTION	PAGE 1 OF 1 <u>ECS37736</u>
EZ/UPUATEU							RVICES, INC. PROJECT Ash Pond Piezometers 'IRONMENTAL ENGINEERING LOCATION Plant Hammond	
Ĺ.							_ COMPLETED <u>11/13/2014</u> SURF. ELEV. <u>579.80</u> COORDINATES: N vices EQUIPMENT <u>CME 550</u> METHOD <u>Hollow Stem Auger; HQ F</u>	
	BORING	g dei	РТН	_32	.5 ft.		LOGGED BY W. Shaughnessy CHECKED BY L. Millet ANGLE GROUND WATER DEPTH: DURING 15 ft. COMP. DELAYED	
	NOTES	W	ell in	istall	ed. Ref	er to	o well data sheet.	
-CIS/GA-HAMI	BOREH DAT	OLE A	PTH (ft)	Тор о	f Casing I		582.52 WELL DATA	COMMENTS
LING/PROJE	ELEV. S		DEP	8-1974C			otective aluminum cover with bollards; 4-foot square concrete pad ELEV. [DEPTH]	
SUPPORI / URIL							-Surface Seal: concrete 577.80 [2.0]	
	573.8		5 · · ·				Well: 2" OD PVC (SCH 40)	
GENERAL SERVICE COMPLE							–Annular Fill: Cement-Bentonite Grout (4 - 94lbs. bags, 44 gal.)	
URKGRUUPS/AP(562.8		11			4	564.30 [15.5] —Annular Seal: 3/8 bentonite pellets (1 - 50lbs. bucket) 561.80 [18.0]	
/8/15 13:11 - S:/W	558.1		20				–Filter: #1A silica filter sand (2 - 50lbs. bags) 557.80 [22.0]	
NU CUM) - ESEE DATABASE.GDT - /			30				-Screen: 10 ft. 0.010" slot pre-pack	
	547.3						=Sump:0.40 ft. 547.80 Backfill:Silica Sand	
ZUIZ WELL CONSTRUCTION						<u>ر</u>		Easting and Northing in NAD 1983. Elevation in NAVD 88.


		ultants Geosyntec (1255 Rober I innovators	ts Boulevar	: d			HGWC-125 PAGE 1 OF 2
CLIE	NT SOL	uthern Company Serv	ices		PROJECT NAME _Plant Hammond Well	Installation	
		JMBER _ GW6581B			PROJECT LOCATION _Plant Hammond		
		TED 5/4/20	C	OMPLETED 5/4/20	NORTHING 1550821.41 ft	EASTING	1 942962.87 ft
		ascade Drilling			GROUND ELEVATION 605.70 ft		DIAMETER _ 6 in
		ETHOD Sonic			TOP OF CASING ELEVATION 608.89 f		
		METHOD _4" core 6"	override		GEOPHYSICAL CONTRACTOR		
RIG 1	YPE _T	erra Sonic Compact (Crawler		LOGGED BY N.Tilahun	CHECKE	D BY J. Ivanowski
DEPTH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG		RIAL DESCRIPTION	ſ	
0 5 - 0 10 - 15 - 2 10 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -				sand, few fine to coarse angula 20 ft: Trace black mottles.	r to medium plasticity, trace fine to medium ar gravel, few silt, soft to firm, moist.	595.7	- Schedule 40 PVC 2" Aquaguard Sodium Bentonite Grout



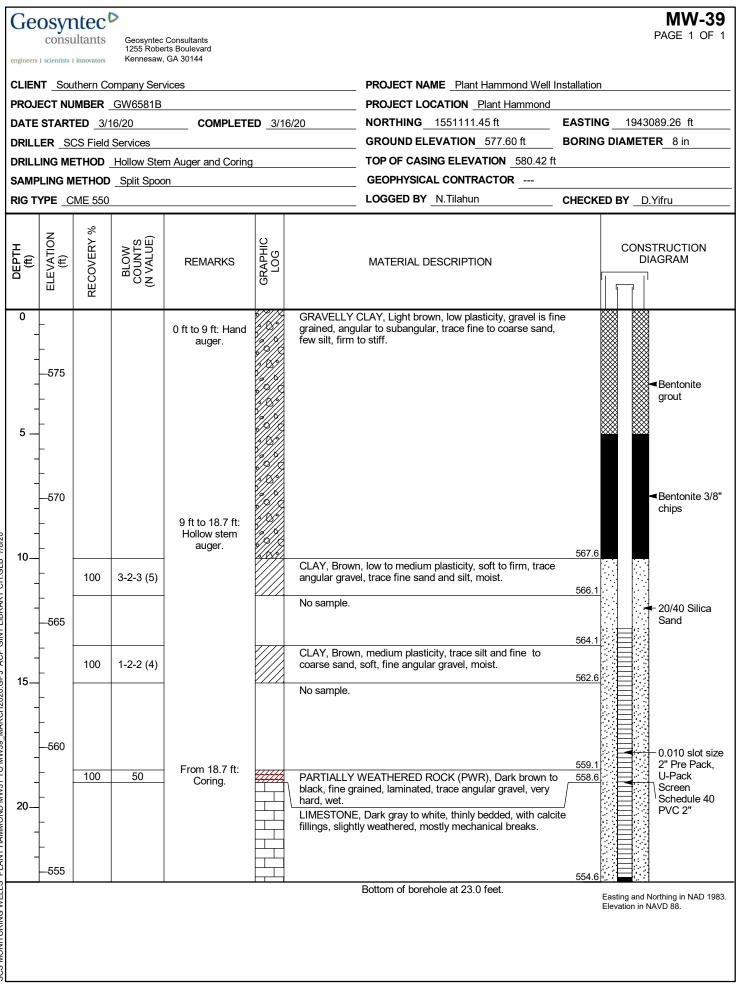
SCS MONITORING WELLS PLANT HAMMOND MW34D TO MW41, MAY 2020.GPJ ACP GINT LIBRARY CH.GLB 7/8/20

Je	osynt consult	onto Geosyniec	Consultants				HGWC-12
ngineers	scientists ini	Kennesaw.	rts Boulevar GA 20144	a			PAGE 1 OF
LIEN	IT South	ern Company Ser	/ices		PROJECT NAME Plant Hammond	Well Installatior	1
PROJI	ECT NUM	BER GW6581B			PROJECT LOCATION Plant Hamm		
DATE	STARTE	D 11/25/19	C(OMPLETED 11/26/19	NORTHING <u>1550422.03</u>	EASTING	1942689.40
RILL	ER SCS	Field Services			GROUND ELEVATION 608.72	BORING I	DIAMETER 6 in
RILL	ING MET	HOD Sonic			TOP OF CASING ELEVATION 611	.24	
SAMP	LING ME	THOD Core Barro	el (4")		GEOPHYSICAL CONTRACTOR	-	
RIG T	YPE Son	iic TS-150			LOGGED BY B. Weinmann	СНЕСКІ	ED BY J. Ivanowski
UEPTH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MA	TERIAL DESCRIPTION	ELEV:	CONSTRUCTION DIAGRAM
				Hydro excavation (0-10') - N		608.72	
	- - - - - - - - - - - - - - - - - - -			CLAY, with SAND, Light yell grained sand, few silt, mosth	low to brown, medium plasticity, fine to me y clay.	<u>598.72</u> dium	- Schedule 40 PVC 2"
- 25— - 30—	- 						
							▓ ▓

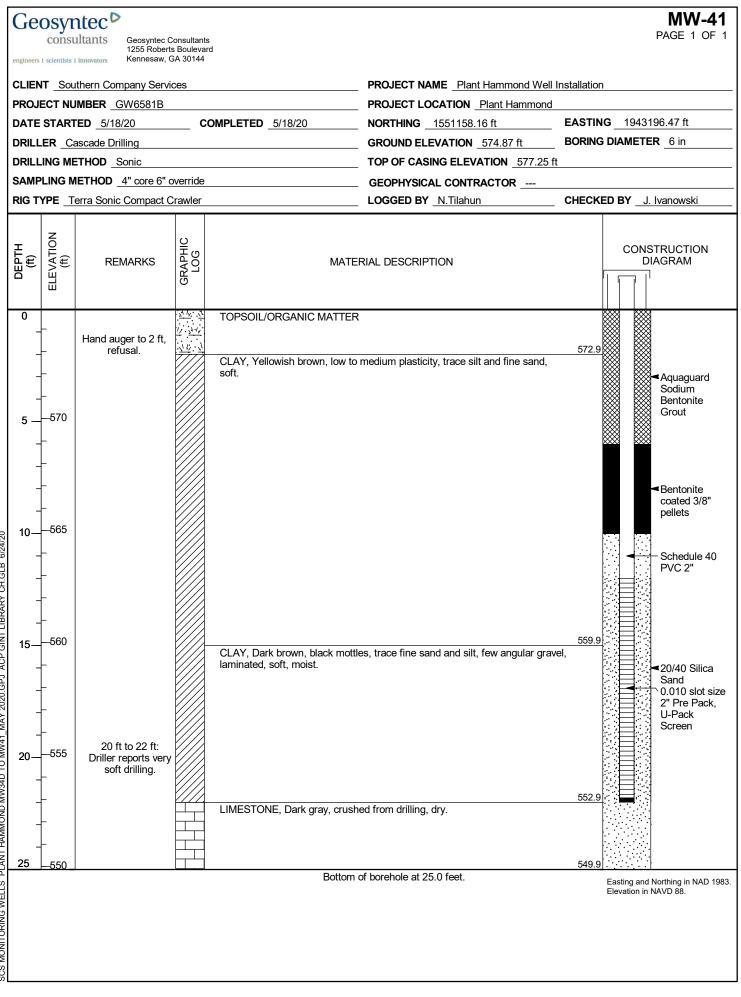
Log updated with revised survey certified 5/19/2020.

SCS MONITORING WELLS PLANT HAMMOND MW31 TO MW33 DECEMBER 2019.GPJ ACP GINT LIBRARY CH.GLB 1/10/20

			·		
SOUTHER EARTH SC ATE START ONTRACTO RILLED BY ORING DEP OTES DREHOLE			RECORD OF WELL CONSTRUCTION		WELL: AP03-MW2 PAGE 1 OF ECS3773
CONTREE			PRO JECT Ash Dand Distances	ers	
SOUTHER EARTH SC			ERVICES, INC. <u>Astronomication Project Astronomication Project Astronomication Plant Hammond</u>		
ATE START			COMPLETED 12/3/2014 SURF. ELEV. 583.60 COOF		
ONTRACTO			ervices EQUIPMENT CME 550 METHOD Hollow Stem		
RILLED BY			LOGGED BY W. Shaughnessy CHECKED BY L. Millet		
ORING DEP			GROUND WATER DEPTH: DURING _5 ft COMP	_ DELAYED	6.4 ft. after 24 hrs.
OTES We	Il instal	led. Refer	to well data sheet.		
		of Casing Ele	v: 586.27 WELL DATA		COMMENTS
	DEPTH		rotective aluminum cover with bollards; 4-foot square concrete pad		
LEV. Strata	-			ELEV. [DEPTH]	
			-Surface Seal: concrete	504 00	
			Well: 2" OD PVC (SCH 40)	581.60 [2.0]	
			Annular Fill: Cement-Bentonite Grout (1 - 94lbs. bags, 11 gal.)	580.00	
	<u>،</u>		······	[3.6]	
.60	<u> </u>				
[7]			- Annular Saal: 2/9 hontonita nallate (1 - 50lhs, huckat)		
			 Annular Seal: 3/8 bentonite pellets (1 - 50lbs. bucket) 		
	키			573.10	
				[10.5]	
			 Filter: #1A silica filter sand (4 - 50lbs. bags) 	570.40	
	•••			[13.2]	
	15			.	
7.60					
20 20 70					
0.0.0 0.0			Screen: 10 ft. 0.010" slotted		
4.20 AVA	50				
				560.40	
9.20			Sump:0.40 ft.	[23.2] 560.00	
				[23.6]	Easting and Northing in NAD 1983.
					Elevation in NAVD 88.
9.20			Sump:0.40 ft. Backfill:caved material	[23.2] 560.00	

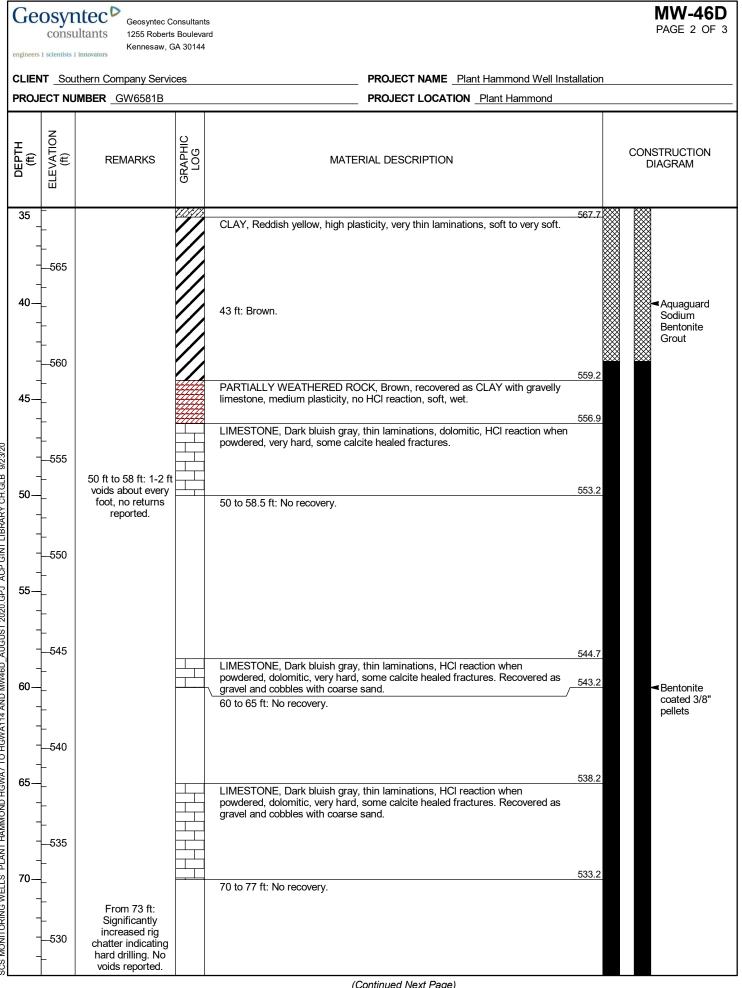

ž 2 2 2 2 2 2 2	Log updated	w k	ith re	evised su	vey certified 5/19/	2020.				
	SOUT				;		ecori Const) OF RUCTION		WELL: AP03-MW23 PAGE 1 OF 1 <u>ECS37736</u>
	SOUTHE	DN	CO	ΜΠΛΝΙΎ Ο	ERVICES, INC.		PROJE	CT Ash Pond Pie	ezometers	
Ì	EARTH S	CIE	ENCI	E AND EN	VIRONMENTAL	ENGINEERING				
Ĭ							200/11			
	CONTRACT	OR	SC	S Field S	ervices	EQUIPMENT	CME 550	METHOD Hollow	w Stem Auger; HQ F	
5	DRILLED BY	(F. Mi	lam	LOGGED BY _V	V. Shaughnessy		DBY L. Millet	ANGLE	BEARING
	BORING DE	PT	H _2	9.5 ft.	GROUND WATE	ER DEPTH: DURIN	G <u>15 ft.</u>	COMP	DELAYED	8.9 ft. after 72 hrs.
	NOTES <u>W</u>	ell	insta	lled. Refe	to well data sheet.					
5	BOREHOLE	æ	_			WELL DAT	Δ			COMMENTS
5	DATA		Тор	of Casing El						
š		DEPTI			Surface: rotective aluminum	over with bollard	s: 4-foot eau	lare concrete nad		
Ĕ		Ш		∎'			5, ⊣ 100t Sqt	and concrete pau		
	ELEV. Strata								ELEV. [DEPTH]	
Į			· 7 .							
		}	₽.;•.		 Surface Seal: co 				580.13	
2		}	KÜ						[2.0]	
5			\gg							
5		1	\mathbb{K}	$\{ K $						
-	576.13		$\langle \rangle \rangle$		Well: 2" OD PV	C (SCH 40)				
			X							
Ń]	\mathbb{X}							
		1	\otimes		Annular Fill: Cer	ment-Bentonite Gr	out (3 - 94lb	s. bags, 33 gal.)		
5		0	$\langle / / \rangle$,	0, 0,		
5		<u> </u>	\otimes							
	570.13	1	\langle / \rangle							
Ĭ			\gg							
	09	1	$\mathbb{K}//$							
5	202	1	\gg						567.53	
Ĩ	0	÷							[14.6]	
	5Z	.			Annular Seal: 3	/8 bentonite pellets	s (1 - 50lbs.	bucket)		
	696							·	564.83	
	¢)	1			 Filter: #1A silica 	filter sand (3.5 - 5	() he hade)		[17.3]	
	Ø)	1					olus. bays)		563.03	
0 '		50		1					[19.1]	
2	p /]								
2	697]								
	558.63]								
ξf		1			Screen 10 ft 0	.010" slot pre-pack				
j		25								
Į	<u> </u>	1								
Ş	⊢ —	 								
		1] 日常						
0 	552.63								553.03	
		1			Sump:0.40 ft.					
										Easting and Northing in NAD 1983. Elevation in NAVD 88.
5										
5										
Ĭ										
аI										

ž

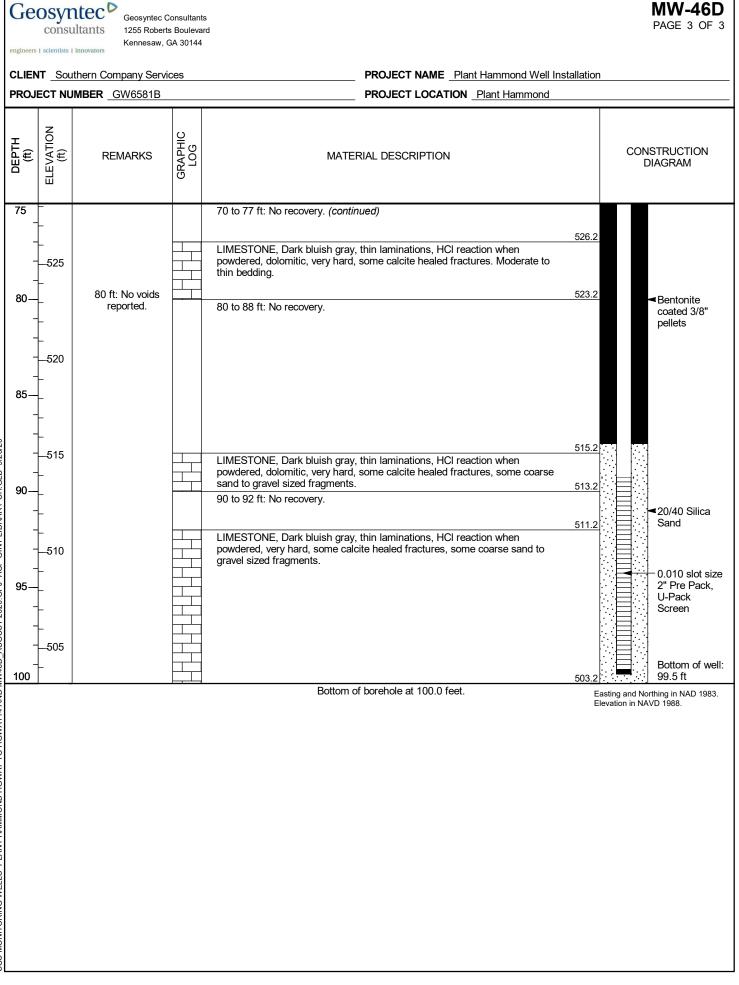

	OSYT consu	ntec ultants	Geosyntec 1255 Robe	Consultants rts Boulevard , GA 30144					PAGE 1 OF
	IT Sou	uthern C	company Se	ervices			PROJECT NAME _ Plant Hammond We	ell Installatior	n
			GW6581				PROJECT LOCATION Plant Hammor		
ATE	STAR	FED <u>1</u>	1/22/19	COMPLET	ED_11/	/26/19			IG 1943021.47 ft
RILL	.ER_S	CS Field	d Services				GROUND ELEVATION 583.10 ft	BORING	G DIAMETER 8 in
RILL	ING MI	ETHOD	HSA + Ro	ock Coring (NQ)			TOP OF CASING ELEVATION 585.	46 ft	
SAMP		IETHO	DSPT				GEOPHYSICAL CONTRACTOR		
RIG T	YPE_C	CME 550)	1	<u> </u>		LOGGED BY N.Tilahun	СНЕСК	ED BY J. Ivanowski
иертн (ft)	ELEVATION (ft)	RECOVERY %	BLOW COUNTS (N VALUE)	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION		
	-				<u></u>	Top soil			
	- - 			0-9': Hand auger.		grained, ang dense, moist	CLAY, Light brown, low plasticity, gravel is ular, trace fien to coarse sand and silt, me t. prown to dark brown.	s fine dium	
- 5	- - - 			9-28.3': Hollow		CLAY, Brow firm, moist.	n, medium plasticity, trace fine sand and s	ilt,	 Bentonite grout
- 10— - -	- - - 			stem auger.		9 - 13.5': No	sample.		
-	-	89	2-2-2 (4)			CLAY, Brow fine sand, fir	n, medium plasticity, trace angular gravel, m, moist.	few	
15— - -	-					15 - 18.5': N	o sample.		Schedule 44 PVC 2"
-	565 _	89	0-0-0 (-)	18.5-20': Weight of hammer.		CLAY, Light wet.	brown, high plasticity, very soft, laminated	l,	
20	-	100	0-0-0 (-)	20-21.5': Weight of					 Bentonite 3, chips
-	-	100	3-2-2 (4)	hammer.			Dark brown, with weathered limestone aminated, soft, moist to wet.		
-	560	22	0-1-1 (2)						20/40 Silica Sand
-	-								

SCS MONITORING WELLS PLANT HAMMOND MW31 TO MW33_DECEMBER 2019.GPJ ACP GINT LIBRARY CH.GLB 1/10/20

	Geosyniec	ts Boulevard			MW-32 PAGE 2 OF 2
	ern Company Serv			PROJECT NAME Plant Hammond Well Install	ation
PROJECT NUME	BLOW BLOW (N VALUE) (N VALUE)	REMARKS	GRAPHIC LOG	PROJECT LOCATION Plant Hammond	CONSTRUCTION DIAGRAM
	30-40-30 (70) 17 50/3" (-) 17 50/3" (-)	From 28.3':		PARTIALLY WEATHERED ROCK (PWR), Gray, fine to coarse gravel sized limestone fragments, very hard, wet. <i>(continued)</i>	
30		Coring.		LIMESTONE, Dark gray, thinly bedded, hard, slightly weathered, with light gray to white calcite filled veins.	0.010 slot size 2" Pre Pack, U-Pack Screen
 550 35 				32 - 37': Void.	Bottom screen Elev. 549.30
					Easting and Northing in NAD 198 Elevation in NAVD 88.



SCS MONITORING WELLS PLANT HAMMOND MW31 TO MW39_MARCH2020.GPJ_ACP GINT LIBRARY CH.GLB_7/8/20



SCS MONITORING WELLS PLANT HAMMOND MW34D TO MW41 MAY 2020.GPJ ACP GINT LIBRARY CH.GLB 6/24/20

(Ge		Geosyntec C Itants 1255 Robert Kennesaw,	s Bouleva				MW-46D PAGE 1 OF 3
enş	gineers	scientists	innovators	GA 30144				
C	LIEN	IT Sou	thern Company Servi	ces		PROJECT NAME Plant Hammond Well	nstallation	
			MBER GW6581B			PROJECT LOCATION Plant Hammond		
					OMPLETED 8/18/20			G 1942929.10 ft
								DIAMETER 6 in
			ETHOD Sonic	override				
			IETHOD <u>4" core 6" o</u> errasonic 1051181	Jvernue		GEOPHYSICAL CONTRACTOR LOGGED BY A. Ramsey	CHECKE	D BV I Ivanowski
							ONLONE	
DEPTH	(H)	ELEVATION (ft)	REMARKS	GRAPHIC LOG		RIAL DESCRIPTION	F	
PLANT HAMMOND HGWA7 TO HGWA114 AND MW46D_AUGUST 2020.GPJ ACP GINT LIBRARY CH.GLB 9/23/20	0	- $ -$			10.5 ft to 11 ft, wet. CLAY, Reddish yellow, lean, lou diameter, hard, moist. 12.8 ft: Gray, lean, laminated, GRAVELLY CLAY, Reddish ye GRAVELLY CLAY, Very pale b moist. CLAY, Grayish brown with som 26.5 ft: Reddish brown, trace o sand inclusions. Increasing gra GRAVELLY CLAY, Reddish ye wet.	s, fine to medium grained, some gravel from w plasticity to non plastic, trace gravel to 1 in firm, low plasticity to non plastic, moist. llow, lean, firm, low plasticity, moist. rown, lean, low plasticity to non plastic, hard ne gravel, low plasticity, firm, moist.	<u>585.7</u> 583.2 579.2 ed	- Schedule 40 PVC 2"

SCS MONITORING WELLS PLANT HAMMOND HGWA7 TO HGWA114 AND MW46D, AUGUST 2020.GPJ ACP GINT LIBRARY CH.GLB 9/23/20

SCS MONITORING WELLS PLANT HAMMOND HGWA7 TO HGWA114 AND MW46D, AUGUST 2020.GPJ ACP GINT LIBRARY CH.GLB 9/23/20

APPENDIX H

Certified Well Survey Data

Well ID	Casing Northing	Casing Easting	Top of Casing Elevation	Nail on Pad Northing	Nail on Pad Easting	Nail on Pad Elevation
HGWA-122	1551251.4160	1941887.1090	587.90	1551251.7520	1941888.4640	585.04
HGWC-120	1551067.2410	1942926.6150	605.82	1551066.9570	1942925.1140	602.83
HGWC-121A	1550607.9660	1943030.4370	584.69	1550606.4290	1943030.8200	582.31
HGWC-124	1551624.9330	1942781.0450	582.52	1551624.4970	1942779.7590	579.80
HGWC-125	1550821.4090	1942962.8700	608.89	1550821.3950	1942961.7570	605.70
HGWC-126	1550422.0250	1942689.3960	611.24	1550422.8480	1942688.6340	608.72
MW-21	1550270.1530	1941809.7590	586.27	1550268.6820	1941809.7320	583.60
MW-23	1551641.4430	1942496.8320	584.91	1551642.7910	1942496.2560	582.13
MW-32	1551092.8320	1943021.4650	585.46	1551094.5220	1943021.1080	583.10
MW-39	1551111.4510	1943089.2570	580.42	1551110.6190	1943087.9290	577.60
MW-41	1551158.1600	1943196.4740	577.25	1551157.3150	1943195.3930	574.87

Benchmark	Northing	Easting	Elevation
BM H-4	1549952.4470	1941611.3640	585.71

SURVEY DATA CERTIFICATION FOR SOUTHERN COMPANY TO DETERMINE NORTHING, EASTING, AND VERTICAL ELEVATION OF THE NAIL IN THE CONCRETE PAD & THE PVC WELL CASING.

FIELD SURVEY & INSPECTION: 05/11/2020-05/14/2020

DATE OF FIELD

SURVEY POSITIONAL TOLERANCE=0.5 FEET HORIZONTAL-NAD'83, 0.01 VERTICAL-NAVD'88 EQUIPMENT USED FOR HORIZONTAL LOCATION: TRIMBLE R10 RTK GPS & TRIMBLE S5 ROBOTIC TOTAL STATION. THE VERTICAL LOCATION OF EACH SURVEYED POINT WAS ESTABLISHED BASED UPON LEVEL RUNS WITH A DIGITAL LEVEL LOOP FROM VERTICAL CONTROL ESTABLISHED BY ON-SITE BENCHMARK BM H-4 SET BY GEL SOLUTIONS USING A TRIMBLE DINI LEVEL

27 RIL

5/19/2020

No LS-3119

MYR. TO

Well ID	Casing Northing	Casing Easting	Top of Casing Elevation	Nail on Pad Northing	Nail on Pad Easting	Nail on Pad Elevation
HGWA-1	1550423.3150	1940770.0000	595.21	1550424.4790	1940770.0550	592.32
HGWA-2	1549796.8670	1939845.1520	587.92	1549796.5130	1939845.2880	585.29
HGWA-3	1549794.4080	1939833.3900	587.74	1549794.0880	1939833.5600	585.23
			•			•

Benchmark	Northing	Easting	Elevation
BM H-3	1548237.4130	1941013.5710	574.63

SURVEY DATA CERTIFICATION FOR SOUTHERN COMPANY TO DETERMINE NORTHING, EASTING, AND VERTICALELEVATION OF THE NAIL IN THE CONCRETE PAD & THE PVC WELL CASING.DATE OFFIELD SURVEY & INSPECTION: 05/11/2020-05/14/2020FIELD

SURVEY & INSPECTION. 05/11/2020-05/14/2020 SURVEY POSITIONAL TOLERANCE=0.5 FEET HORIZONTAL-NAD'83, 0.01 VERTICAL-NAVD'88 USED FOR HORIZONTAL LOCATION: TRIMBLE R10 RTK GPS & TRIMBLE S5 ROBOTIC TOTAL STATION. THE VERTICAL LOCATION OF EACH SURVEYED POINT WAS ESTABLISHED BASED UPON LEVEL RUNS WITH A DIGITAL LEVEL LOOP FROM VERTICAL CONTROL ESTABLISHED BY ON-SITE BENCHMARK BM H-3 SET BY GEL SOLUTIONS USING A TRIMBLE DINI LEVEL

In RIL

5/19/2020

Well ID	Casing Northing	Casing Easting	Top of Casing Elevation	Nail on Pad Northing	Nail on Pad Easting	Nail on Pad Elevation
HGWA-42D	1549363.7180	1938443.8590	586.17	1549362.3140	1938444.3210	583.39
HGWA-43D	1550422.8480	1940753.8050	595.08	1550422.8120	1940754.9980	592.08
HGWA-44D	1550409.1260	1940756.1850	594.79	1550409.2230	1940757.6150	592.01
HGWA-45D	1551157.6780	1941907.5370	586.95	1551159.2250	1941907.4670	584.08
MW-46D	1551056.4780	1942929.1010	605.72	1551055.9530	1942927.8210	603.17
HGWA-47	1548990.9600	1934171.8440	580.33	1548989.2780	1934171.6440	577.39
HGWA-48D	1548989.3900	1934178.1460	580.26	1548988.1150	1934177.8070	577.29

Benchmark	Northing	Easting	Elevation
BM H-1	1547964.9650	1937219.0690	579.02
BM H-2	1548149.4490	1938960.2220	590.68
BM H-4	1549952.4470	1941611.3640	585.71

SURVEY DATA CERTIFICATION FOR SOUTHERN COMPANY TO DETERMINE NORTHING, EASTING, AND VERTICAL ELEVATION OF THE NAIL IN THE CONCRETE PAD & THE PVC WELL CASING. DATE OF FIELD SURVEY & INSPECTION: 09/01/2020-09/02/2020. FIELD SURVEY POSITIONAL TOLERANCE=0.5 FEET HORIZONTAL-NAD'83, 0.01 VERTICAL-NAVD'88. EQUIPMENT USED FOR HORIZONTAL LOCATION: TRIMBLE R10 RTK GPS & TRIMBLE S5 ROBOTIC TOTAL STATION. THE VERTICAL LOCATION OF EACH SURVEYED POINT WAS ESTABLISHED BASED UPON LEVEL RUNS WITH A DIGITAL LEVEL LOOP FROM VERTICAL CONTROL ESTABLISHED BY ON-SITE BENCHMARKS BM H-1, BM-H2 & BM-H4 SET BY GEL SOLUTIONS DURING PREVIOUS SURVEYS USING A TRIMBLE DINI LEVEL

In RIL

