

Plant McDonough-Atkinson Monthly Dewatering Results¹

October 2018

Parameter	Units	Effluent	Concentration	Permit Limits		
i arameter		Minimum	Maximum	Daily Avg	Daily Max	
Flow	MGD	0.0	0.40	***	***	
pН	SU	6.68	8.16	6.0 - 9.0		
Total Suspended Solids	mg/L	ND ²	2.2	30.0	100.0	
Oil and Grease	mg/L	ND	ND	15.0	20.0	

Parameter	Units	Measured Effluent Concentration					
		10/1/2018	10/8/2018	10/17/2018	10/23/2018		
Turbidity	NTU	0.26	0.74	0.49	3.10		
Total Dissolved Solids	mg/L	800	930	300	110		
Ammonia	mg/L	ND	ND	0.09	0.08		
Total Kjeldahl Nitrogen	mg/L	0.28	0.27	0.57	0.37		
Nitrate-Nitrite	mg/L	0.54	0.54	0.27	2.90		
Organic Nitrogen	mg/L	0.28	0.27	0.48	0.29		
Phosphorus	mg/L	ND	ND	ND	ND		
Ortho-Phosphorus	mg/L	ND	ND	ND	ND		
Biological Oxygen Demand	mg/L	15.0	ND	20.0	ND		
Hardness	mg/L	540	630	200	360		

Parameter	Units	Effluent Concentration ³				Calculated River Value ³				Water Quality
		10/1/2018	10/8/2018	10/17/2018	10/23/2018	10/1/2018	10/8/2018	10/17/2018	10/23/2018	Standard⁴
Arsenic	μg/L	3.1	3.4	ND	ND	0.0069	0.0076	***	***	340
Cadmium	μg/L	ND	ND	ND	ND	***	***	***	***	1
Chromium ⁵	μg/L	2.5	ND	ND	ND	0.006	***	***	***	16
Copper	μg/L	ND	ND	2.8	ND	***	***	0.0062	***	7
Lead	μg/L	ND	ND	ND	ND	***	***	***	***	30
Nickel	μg/L	22	20	5.1	6.3	0.0489	0.0445	0.0113	0.0133	260
Selenium ⁶	μg/L	4	2.4	30	92	0.0089	0.0053	0.0667	0.2045	5
Zinc	μg/L	ND	ND	ND	ND	***	***	***	***	65
Mercury	ng/L	ND	0.65	ND	ND	***	0.00145	***	***	1400

- 1 Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.
- 2 ND = Not Detected
- Calculated River Value shows what the total effluent concentration looks like once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are also in the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations are not translated into calculated river values.
- Numeric Water Quality Criteria is the maximum concentration of a parameter (calculated at a default hardness of 50 mg/L as calcium carbonate) established for the receving waterbody that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated River Values less than these criteria are protective of the waterbody.
- 5 Numeric water quality criterion shown is for Hexavalent Chromium.
- 6 The numeric water quality criterion shown is the chronic (long-term) water quality criterion for selenium since this parameter does not have an acute (short-term) water quality criterion.
- *** = Not Applicable

 $mg/L = milligrams \ per \ liter = parts \ per \ million; \ \mug/L = micrograms \ per \ liter = parts \ per \ billion; \ ng/L = nanograms \ per \ liter = parts \ per \ trillion; \ SU = Standard \ Units; \ MGD = Million \ Gallons \ Day$