

Georgia Power

Plant McIntosh Monthly Dewatering Results¹

September 2020

	Units	Efflu	ent Concent	ration	Permit Limits			
Parameter		Daily Min ³	Daily Avg ³	Daily Max ³	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	0.00	0.00	***	***	***	
pН	SU	***	***	***	6.0	***	9.0	
Total Suspended Solids	mg/L	***	***	***	***	30.0	100.0	
Oil and Grease	mg/L	***	***	***	***	15.0	20.0	

Parameter	Units		Daily				
lalameter		Week 1	Week 2	Week 3	Week 4	Week 5	Average
		No discharge					
Turbidity	NTU						
Total Dissolved Solids	mg/L						
Ammonia	mg/L						
Total Kjeldahl Nitrogen	mg/L						
Nitrate-Nitrite	mg/L						
Organic Nitrogen	mg/L						
Phosphorus	mg/L						
Ortho-Phosphorus	mg/L						
Biological Oxygen Demand	mg/L						
Hardness	mg/L						

Parameter	Unita	Effluent Concentration⁴					Calculated Receiving Water Concentration ⁴						Water Quality Criteria ⁵	
Parameter	Week	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5	A	A 4 - 6	011-6
		No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	Average	Acute ⁶	Chronic ⁶
Arsenic	μg/L												340	150
Cadmium	μg/L												1	0.43
Chromium ⁷	μg/L												16	11
Copper	μg/L												7	5
Lead	μg/L												30	1.2
Nickel	μg/L												260	29
Selenium ⁸	μg/L												***	5
Zinc	μg/L												65	65
Mercury	ng/L												1400	12

- 1 Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.
 2 ND = Not Detected (below the lab's reporting limit).
 3 Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Avg is the arithmetic average of all daily values during the entire month.
 4 Calculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are also in the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations are not translated into Calculated Receiving Water Concentrations.
 5 Numeric Water Quality Criteria is the maximum concentration of a parameter (calculated at a default hardness on poll, as calcular actions and regulations. Calculated Receiving Water Concentrations less than these criteria are protective of the waterbody.
 5 Acute (short-term) water quality criterion shown is for Hexavalent Chromium.
 5 The numeric water quality criterion shown is for Hexavalent Chromium.
 6 The numeric water quality criterion shown is the chronic (long-term) water quality criterion for selenium since this parameter does not have an acute (short-term) water quality criterion.
 6 The numeric water quality criterion shown is the chronic (long-term) water quality criterion.
 7 Numeric water quality criterion shown is for Hexavalent Chromium.
 8 The numeric water quality criterion shown is the chronic (long-term) water quality criterion for selenium since this parameter does not have an acute (short-term) water quality criterion.
 8 The numeric water quality criterion shown is the chronic (long-term) water parts per billion; ng/L = management per parts per billion; BU = Standard Units; MGD = Million Gallons Day

Plant McIntosh

Prepared by:

Monthly Instream Results¹

September 2020

		Savannah River ²								
Parameter ³	Units	No discharge	No discharge	No discharge	No discharge					
		Upstream	Downstream	Upstream	Downstream					
рН	SU									
TSS	mg/L									
O&G	mg/L									
Turbidity	NTU									
TDS	mg/L									
BOD	mg/L									
Arsenic	μg/L									
Cadmium	μg/L									
Chromium	μg/L									
Copper	μg/L									
Lead	μg/L									
Mercury	ng/L									
Nickel	μg/L									
Selenium	μg/L									
Zinc	μg/L									
Ammonia	mg/L									
TKN	mg/L									
Nitrate-Nitrite	mg/L									
Organic Nitrogen	mg/L									
Phosphorus	mg/L									
Ortho-phosphorus	mg/L									
Hardness	mg/L									

- 1 Tetra Tech verifies the correct laboratory analysis methods were used.
- 2 Savannah River measured 1,000ft upstream and 1,000ft downstream of Outfall 01.
- 3 Metals results are total recoverable.
- 4 ND = Non-detect

mg/L = milligrams per liter = parts per million; $\mu g/L = micrograms$ per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; $SU = Standard\ Units$; $MGD = Million\ Gallons\ Day$