

Georgia Power

Plant Yates Monthly Dewatering Results¹ April 2020

	Units	Efflu	ent Concent	ration	Permit Limits			
Parameter		Daily Min ³	Daily Avg ³	Daily Max ³	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	0.83	1.01	***	***	***	
pН	SU	6.6	***	8.0	6.0	***	9.0	
Total Suspended Solids	mg/L	ND^2	ND	ND	***	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	***	15.0	20.0	

Parameter	Units		Daily				
Parameter	Ullits	Week 1	Week 2	Week 3	Week 4	Week 5	Average
		4/1/2020	4/8/2020	4/15/2020	4/22/2020	4/30/2020	
Turbidity	NTU	2.5	4.2	1.6	2.2	1.2	2.3
Total Dissolved Solids	mg/L	403 364		260	181	237	289
Ammonia	mg/L	0.63	0.78	0.75	0.50	0.56	0.64
Total Kjeldahl Nitrogen	mg/L	0.68	0.75	0.72	0.67	0.63	0.69
Nitrate-Nitrite	mg/L	0.25	0.28	0.32	0.28	0.32	0.29
Organic Nitrogen	mg/L	ND	ND	ND	ND	ND	ND
Phosphorus	mg/L	ND	ND	ND	ND	ND	ND
Ortho-Phosphorus mg/L		ND	ND	ND	ND	ND	ND
Biological Oxygen Demand	mg/L	2.2	ND	ND	ND	ND	0.4
Hardness	mg/L	144	189	176	115	116	148

Parameter Units	Unito	Effluent Concentration⁴					Calculated Receiving Water Concentration⁴					Water Quality Criteria ⁵		
	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5	Average	A4 - 6	Chronic ⁶
		4/1/2020	4/8/2020	4/15/2020	4/22/2020	4/30/2020	4/1/2020	4/8/2020	4/15/2020	4/22/2020	4/30/2020	Average	Acute ⁶	Chronic
Arsenic	μg/L	5.0	ND	ND	ND	ND	0.0076	***	***	***	***	0.0015	340	150
Cadmium	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	1	0.43
Chromium ⁷	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	16	11
Copper	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	7	5
Lead	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	30	1.2
Nickel	μg/L	6.8	5.1	ND	5.1	8.1	0.0104	0.0078	***	0.0078	0.0123	0.0076	260	29
Selenium ⁸	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	***	5
Zinc	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	65	65
Mercury	ng/L	ND	0.6	0.9	ND	0.6	***	0.0009	0.0013	***	0.0009	0.0006	1400	12

- Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.
- 1 Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.

 2 ND = NO Detected (below the lab's reporting limit).

 3 Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Avg is the arithmetic average of all daily values during the entire month.

 4 Calculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are a loss in the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations are not translated into Calculated Receiving Water Concentrations.

 5 Numeric Water Quality Criteria is the maximum concentration of a parameter (calculated at a default hardness of 50 mg/L as calcium carbonate) established for the receiving waterbody that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Water Concentrations less than these criteria are protective of the value regulations. Calculated Receiving Water Concentrations less than these criteria are protective of the value regulations. Calculated Receiving water occurrent of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Water Concentration is estimated that these criteria are protective of the value regulations. Calculated Receiving water concentration is estimated that the protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving water concentration is estimated that the protective of the designated use per Georgia EPD's rules and requility criterion to be compared with the average calculated receiving water concentration.

 5 Numeric water quality criterion is only used to the receiving water concentration. Chronium.

 6 The numeric water quality crite

- mg/L = milligrams per liter = parts per million; µg/L = micrograms per liter = parts per million; µg/L = micrograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day

Plant Yates

Prepared by:

Monthly Instream Results¹

April 2020

		Chattahoochee River ²						
Parameter ³	Units	4/15/2020	4/15/2020	4/22/2020	4/22/2020			
		Upstream	Downstream	Upstream	Downstream			
рН	SU	7.0	7.1	8.1	7.7			
TSS	mg/L	142.0	60.0	32.0	33.5			
O&G	mg/L	ND^4	ND	ND	ND			
Turbidity	NTU	100.0	102.0	34.0	32.0			
TDS	mg/L	85	58	74	72			
BOD	mg/L	ND	ND	ND	ND			
Arsenic	μg/L	ND	ND	ND	ND			
Cadmium	μg/L	ND	ND	ND	ND			
Chromium	μg/L	6.6	ND	ND	ND			
Copper	μg/L	7.0	6.6	ND	ND			
Lead	μg/L	5.6	3.0	2.2	1.4			
Mercury	ng/L	10.5	8.8	4.2	3.7			
Nickel	μg/L	ND	ND	ND	ND			
Selenium	μg/L	ND	ND	ND	ND			
Zinc	μg/L	33.8	19.6	11.5	ND			
Ammonia	mg/L	ND	ND	ND	ND			
TKN	mg/L	0.72	1.00	ND	ND			
Nitrate-Nitrite	mg/L	0.96	0.94	0.76	0.77			
Organic Nitrogen	mg/L	0.67	0.98	ND	ND			
Phosphorus	mg/L	0.15	0.84	0.06	ND			
Ortho-phosphorus	mg/L	ND	ND	ND	ND			
Hardness	mg/L	24	21	21	21			

- 1 Tetra Tech verifies the correct laboratory analysis methods were used.
- 2 Chattahoochee River measured 1000 ft upstream and 1000 ft downstream from the final discharge at Outfall 01.
- 3 Metals results are total recoverable.
- 4 ND = Non-detect

mg/L = milligrams per liter = parts per million; $\mu g/L = micrograms$ per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day