

Plant Yates

Prepared by: TETRA TECH

TŁ

Monthly Dewatering Results¹

April 2021

Demonster	Units	Efflu	ent Concent	ration	Permit Limits			
Parameter		Daily Min ²	Daily Avg ²	Daily Max ²	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	1.21	2.37	***	***	***	
рН	SU	6.7	***	7.7	6.0	***	9.0	
Total Suspended Solids	mg/L	ND ³	2.4	6.5	***	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	***	15.0	20.0	

Barrata	Units		Daily				
Parameter		Week 1	Week 2	Week 3	Week 4	Week 5	Average
		4/1/2021	4/7/2021	4/14/2021	4/21/2021	4/28/2021	_
Turbidity ⁴	NTU	3.8	3.6	3.7	4.2	2.2	3.5
Total Residual Chlorine ⁴	mg/L	ND	ND	ND	ND	ND	ND
Total Dissolved Solids	mg/L	319	364	419	561	371	407
Ammonia	mg/L	0.19	0.15	0.11	0.47	0.34	0.25
Total Kjeldahl Nitrogen	mg/L	ND	ND	ND	0.63	0.79	0.28
Nitrate-Nitrite	mg/L	0.30	0.25	0.05	0.15	0.3	0.21
Organic Nitrogen	mg/L	ND	ND	ND	ND	ND	ND
Phosphorus	mg/L	ND	ND	ND	ND	ND	ND
Ortho-Phosphorus	mg/L	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand	mg/L	ND	ND	ND	ND	ND	ND
Hardness	mg/L	190	236	260	312	241	248

Dente	11-24-	Effluent Concentration ⁵					Calculated Receiving Water Concentration ⁵					Water Quality Criteria ⁶		
Parameter	Units	Units Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5		7	a 7
		4/1/2021	4/7/2021	4/14/2021	4/21/2021	4/28/2021	4/1/2021	4/7/2021	4/14/2021	4/21/2021	4/28/2021	Average	Acute'	Chronic ⁷
Arsenic	μg/L	ND	ND	ND	6.2	ND	***	***	***	0.0221	***	***	340	150
Cadmium	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	0.94	0.43
Chromium ⁸	μg/L	ND	ND	ND	ND	14.9	***	***	***	***	0.0531	***	16	11
Copper	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	7	5
Lead	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	30	1.2
Nickel	μg/L	7.1	9.1	6.8	6.0	13.9	0.0231	0.0324	0.0223	0.0214	0.0495	0.0298	260	29
Selenium ⁹	μg/L	ND	ND	ND	ND	6.9	***	***	***	***	0.0246	0.0049	***	5
Zinc	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	65	65
Mercury	ng/L	0.9	ND	ND	0.8	ND	0.0034	***	***	0.0027	***	0.0012	1400	12

Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.
Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Avg is the arithmetic average of all daily values during the entire month.
Turbidity and total residue ichorine are monitored continuously. The value reported is the weekly maximum and the daily average is the average of the weekly maximum values reported.
Calculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are also in the dissolved form. Consistent with Georgia EPD, on-detectable effluent concentrations are protective of the designated use per Georgia EPD's mueric water quality criteria, which are equalative. Calculated Receiving Water Concentrations are protective of the designated use per Georgia EPD's rules and functions and the daily average is the average of the receiving waterbody. This value is calculated Receiving waterbody that will be protective of the designated use per Georgia EPD's rules and functions are protective of the values during three entremations are protective of the values during three entremations.
Numeric water quality criterion shown is the chronic (ung-term) water quality criterion is the average calculated receiving water concentration.
Numeric water quality criterion shown is the chronic (ung-term) water quality criterion shown is the chronic (ung-term) water quality criterion shown is the chronic (

Plant Yates

Prepared by:

TŁ

TETRA TECH

Monthly Instream Results¹

April 2021

		Chattahoochee River ²							
Parameter ³	Units	4/7/2021	4/7/2021	4/14/2021	4/14/2021				
		Upstream	Downstream	Upstream	Downstream				
pН	SU	6.9	6.8	6.9	6.9				
TSS	mg/L	7.5	ND	13.0	14.0				
O&G	mg/L	ND^4	ND	ND	ND				
TRC	mg/L	***	***	***	***				
Turbidity	NTU	10.9	17.3	14.0	16.0				
TDS	mg/L	37	31	54	62				
BOD	mg/L	ND	ND	ND	ND				
Arsenic	μg/L	ND	ND	ND	ND				
Cadmium	μg/L	ND	ND	ND	ND				
Chromium	μg/L	ND	ND	ND	5.1				
Copper	μg/L	ND	ND	5.8	6.7				
Lead	μg/L	ND	ND	4.2	5.8				
Mercury	ng/L	1.2	1.3	1.9	2.3				
Nickel	μg/L	ND	ND	ND	ND				
Selenium	μg/L	ND	ND	ND	ND				
Zinc	μg/L	ND	ND	24.4	27.0				
Ammonia	mg/L	ND	ND	ND	0.19				
TKN	mg/L	ND	0.55	ND	ND				
Nitrate-Nitrite	mg/L	0.82	0.83	1.40	1.30				
Organic Nitrogen	mg/L	ND	0.50	ND	ND				
Phosphorus	mg/L	ND	ND	0.10	0.12				
Ortho-phosphorus	mg/L	ND	ND	ND	ND				
Hardness	mg/L	20	22	28	28				

1 Tetra Tech verifies the correct laboratory analysis methods were used.

2 Chattahoochee River measured 1000 ft upstream and 1000 ft downstream from the final discharge at Outfall 01.

3 Metals results are total recoverable.

4 ND = Non-detect

*** = Not Applicable

mg/L = milligrams per liter = parts per million; μ g/L = micrograms per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day