

Plant Yates

Prepared by:

TŁ TETRA TECH

Monthly Dewatering Results¹

July 2022

Demonster	Units	Efflu	ent Concent	ration	Permit Limits			
Parameter		Daily Min ²	Daily Avg ²	Daily Max ²	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	1.10	1.91	***	***	***	
рН	SU	6.6	***	8.4	6.0	***	9.0	
Total Suspended Solids	mg/L	ND3	1.3	5.0	***	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	***	15.0	20.0	

	Units						
Parameter		Week 1	Week 2	Week 3	Week 4	Week 5	Daily
		Sampled in June	7/6/2022	7/12/2022	7/18/2022	7/29/2022	Average
Turbidity ⁴	NTU		1.2	1.2	2.0	1.4	1.5
Total Residual Chlorine ⁴	mg/L		ND	ND	ND	ND	ND
Total Dissolved Solids	mg/L		678	377	549	508	528
Ammonia	mg/L		0.37	ND	0.11	ND	0.12
Total Kjeldahl Nitrogen	mg/L		0.65	ND	ND	1.10	0.44
Nitrate-Nitrite	mg/L		0.33	0.28	0.27	0.05	0.23
Organic Nitrogen	mg/L		ND	ND	ND	1.00	0.25
Phosphorus	mg/L		ND	ND	ND	ND	ND
Ortho-Phosphorus	mg/L		ND	ND	ND	ND	ND
Biological Oxygen Demand	mg/L		ND	ND	ND	ND	ND
Hardness	mg/L		403	214	292	291	300

Effluent Concentration ⁵					Calculated Receiving Water Concentration ⁵					Water Quality Criteria ⁶				
Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5			
		Sampled in June	7/6/2022	7/12/2022	7/18/2022	7/29/2022	Sampled in June	7/6/2022	7/12/2022	7/18/2022	7/29/2022	Average	Acute ⁷	Chronic ⁷
Antimony	μg/L		ND	ND	ND	ND		***	***	***	***	***	***	640
Arsenic	μg/L		ND	ND	ND	ND		***	***	***	***	***	340	150
Cadmium	μg/L		ND	ND	ND	ND		***	***	***	***	***	0.94	0.43
Chromium ⁸	μg/L		ND	ND	ND	ND		***	***	***	***	***	16	11
Copper	μg/L		ND	ND	ND	ND		***	***	***	***	***	7	5
Lead	μg/L		ND	ND	ND	ND		***	***	***	***	***	30	1.2
Nickel	μg/L		ND	ND	ND	ND		***	***	***	***	***	260	29
Selenium ⁹	μg/L		10.9	19.9	ND	9.9		0.0281	0.0573	***	0.0285	0.0285	***	5
Thallium	μg/L		ND	ND	ND	ND		***	***	***	***	***	***	0.47
Zinc	μg/L		ND	ND	ND	22.3		***	***	***	0.0642	0.0160	65	65
Mercury	ng/L		0.7	0.8	0.8	0.7		0.0021	0.0022	0.0023	0.0019	0.0021	1400	12

Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.
Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Avgi is the arithmetic average of all daily values during the entire month.
ND = Not Detected (below the lab's reporting limit).
Turbidity and total residual chorine are monitored continuously. The value reported is the weekly maximum and the daily average is the average of the weekly maximum values reported.
Galculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria with rear also in the discolved form. Consistent with Georgia EPD, on-detectable effluent concentrations estimate the mesor frains are protective of the weekly maximum values reported.
Numeric Water Quality Criteria is the maximum concentration of a parameter (calculated at a default hardness of 50 mg/L as calculum carbonate) established for the receiving waterbody. This water quality criterion is be compared with the weekly calculated Receiving water concentrations.
Numeric water quality criterion is the diversities is established for the water quality criterion is be compared with the weeking calculated receiving water concentration.
Numeric water quality criterion shown is the chronic. (long-term) water quality criterion to be compared with the average calculated receiving water concentration.
Numeric water quality criterion shown is the chronic. (long-term) water quality criterion of have an acute (short-term) water quality criterion.
The numeric water quality criterion shown is the chronic. (long-term) water quality criterion is be an athro

Plant Yates

Prepared by:

TETRATECH

Monthly Instream Results¹

July 2022

		Chattahoochee River ²							
Parameter ³	Units	7/6/2022	7/6/2022	7/12/2022	7/12/2022				
		Upstream	Downstream	Upstream	Downstream				
рН	SU	7.0	7.0	6.9	7.0				
TSS	mg/L	56.4	36.7	41.6	27.6				
O&G	mg/L	ND^4	ND	ND	ND				
TRC	mg/L	***	***	***	***				
Turbidity	NTU	48.9	57.5	38.1	49.6				
TDS	mg/L	59	62	130	64				
BOD	mg/L	ND	ND	ND	ND				
Antimony	μg/L	ND	ND	ND	ND				
Arsenic	μg/L	ND	ND	ND	ND				
Cadmium	μg/L	ND	ND	ND	ND				
Chromium	μg/L	ND	ND	ND	ND				
Copper	μg/L	5.3	ND	ND	ND				
Lead	μg/L	2.9	2.7	1.3	2.2				
Mercury	ng/L	5.3	5.6	2.9	3.5				
Nickel	μg/L	ND	ND	ND	ND				
Selenium	μg/L	ND	ND	ND	ND				
Thallium	μg/L	ND	ND	ND	ND				
Zinc	μg/L	12.8	12.1	ND	10.6				
Ammonia	mg/L	ND	ND	0.11	ND				
TKN	mg/L	1.50	0.93	ND	ND				
Nitrate-Nitrite	mg/L	0.87	0.92	1.20	1.20				
Organic Nitrogen	mg/L	1.40	0.87	ND	ND				
Phosphorus	mg/L	0.09	0.08	0.10	0.12				
Ortho-phosphorus	mg/L	ND	ND	0.03	ND				
Hardness	mg/L	23	21	24	25				

1 Tetra Tech verifies the correct laboratory analysis methods were used.

2 Chattahoochee River measured 1000 ft upstream and 1000 ft downstream from the final discharge at Outfall 01.

3 Metals results are total recoverable.

4 ND = Non-detect

*** = Not Applicable

mg/L = milligrams per liter = parts per million; μ g/L = micrograms per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day