

Plant Yates

Prepared by:

Monthly Dewatering Results¹

July 2020

		Efflu	ent Concent	ration	Permit Limits			
Parameter	Units	Daily Min ³	Daily Avg ³	Daily Max ³	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	0.52	0.99	***	***	***	
рН	SU	6.5	***	8.1	6.0	***	9.0	
Total Suspended Solids	mg/L	ND ²	1.5	7.5	***	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	***	15.0	20.0	

Parameter	Units		Daily				
Parameter		Week 1	Week 2	Week 3	Week 4	Week 5	Average
		7/1/2020	7/8/2020	7/15/2020	7/22/2020	7/29/2020	
Turbidity	NTU	1.5	1.5	1.6	1.5	2.5	1.7
Total Dissolved Solids	mg/L	385	385 378 37		443	545	425
Ammonia	mg/L	0.86	0.80	1.20	1.10	1.20	1.03
Total Kjeldahl Nitrogen	mg/L	1.40	1.10	1.20	1.30	1.10	1.22
Nitrate-Nitrite	mg/L	0.83	0.74	0.38	0.51	0.58	0.61
Organic Nitrogen	mg/L	0.57	ND	ND	ND	ND	0.11
Phosphorus	mg/L	ND	ND	ND	ND	ND	ND
Ortho-Phosphorus mg		ND	ND	ND	ND	ND	ND
Biological Oxygen Demand	mg/L	2.8	ND	ND	3.4	4.6	2.2
Hardness	mg/L	203	208	213	232	300	231

Descender	11	Effluent Concentration ⁴					Calculated Receiving Water Concentration ⁴					Water Quality Criteria⁵		
Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5	A	A	0
		7/1/2020	7/8/2020	7/15/2020	7/22/2020	7/29/2020	7/1/2020	7/8/2020	7/15/2020	7/22/2020	7/29/2020	Average	Acute [®]	Chronic ⁶
Arsenic	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	340	150
Cadmium	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	1	0.43
Chromium ⁷	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	16	11
Copper	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	7	5
Lead	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	30	1.2
Nickel	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	260	29
Selenium ⁸	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	***	5
Zinc	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	65	65
Mercury	ng/L	ND	ND	ND	8.3	2.5	***	***	***	0.0124	0.0037	0.0032	1400	12

5

Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards. ND = Not Detected (below the lab's reporting limit). Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Avg is the arithmetic average of all daily values during the entire month. Calculated Receiving Water Concentration Show the effurent concentration at the discharge once it has fully mixed in the receiving water documentations. Numeric Water quality criteria, which are also in the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations are not translated into Calculated Receiving Water Concentrations. Numeric Water Quality Criteria, which are also in the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations are not translated into Calculated Receiving Water Concentrations. Numeric Water Quality Criteria, which are also in the dissolved form. Consistent with Georgia EPD, non-detectable of form of Los calculated Receiving Water Concentrations. Numeric Water Quality Criteria, which are also in the dissolved form. Consistent with Georgia EPD, non-detectable of form of Los calculated Receiving Water Concentrations. Numeric Water Quality Criteria is the maximum concentration of a parameter (calculated at a default hardness of 50 mg/L as calculated for the receiving waterbody that will be protective of the designated use per Georgia EPD's rules and regulators. Calculated Receiving Water Concentrations is shan these criteria are protective of the waterbody. Acute (short-term) water quality criterion to be compared with the weekly calculated receiving water concentration. Numeric water quality criterion shown is for Hexavalent Chromium. The numeric water quality criterion shown is the chronic (long-term) water quality criterion there on the quality criterion. * Not Applicable

7 8

*** = Not Applicable mg/L = milligrams per liter = parts per million; yg/L = micrograms per liter = parts per trillion; SU = Standard Units; MGD = Million Galons Day

Plant Yates

Prepared by:

TETRATECH

Monthly Instream Results¹

July 2020

		Chattahoochee River ²							
Parameter ³	Units	7/1/2020	7/1/2020	7/22/2020	7/22/2020				
		Upstream	Downstream	Upstream	Downstream				
рН	SU	7.0	7.3	6.9	7.0				
TSS	mg/L	25.5	24.0	12.5	15.0				
O&G	mg/L	ND^4	ND	ND	ND				
Turbidity	NTU	28.0	31.0	20.0	15.4				
TDS	mg/L	79	66	117	100				
BOD	mg/L	ND	ND	ND	ND				
Arsenic	μg/L	ND	ND	ND	ND				
Cadmium	μg/L	ND	ND	ND	ND				
Chromium	μg/L	ND	ND	ND	ND				
Copper	μg/L	ND	ND	ND	ND				
Lead	μg/L	2.0	1.1	1.2	4.2				
Mercury	ng/L	3.1	3.1	10.6	12.0				
Nickel	μg/L	ND	ND	ND	ND				
Selenium	μg/L	ND	ND	ND	ND				
Zinc	μg/L	12.7	ND	ND	21.6				
Ammonia	mg/L	ND	ND	ND	ND				
TKN	mg/L	1.10	0.98	0.76	0.74				
Nitrate-Nitrite	mg/L	1.70	1.60	2.70	3.00				
Organic Nitrogen	mg/L	1.10	0.96	0.76	0.74				
Phosphorus	mg/L	0.07	ND	0.06	0.11				
Ortho-phosphorus	mg/L	ND	ND	ND	ND				
Hardness	mg/L	26	24	35	38				

1 Tetra Tech verifies the correct laboratory analysis methods were used.

2 Chattahoochee River measured 1000 ft upstream and 1000 ft downstream from the final discharge at Outfall 01.

3 Metals results are total recoverable.

4 ND = Non-detect

mg/L = milligrams per liter = parts per million; μ g/L = micrograms per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day