

Plant Yates

Prepared by:

Tł TETRA TECH

Monthly Dewatering Results¹

March 2022

Demonster		Efflu	ent Concent	ration	Permit Limits			
Parameter	Units	Daily Min ²	Daily Avg ²	Daily Max ²	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	1.35	2.38	***	***	***	
рН	SU	6.7	***	8.0	6.0	***	9.0	
Total Suspended Solids	mg/L	ND ³	ND	ND	***	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	***	15.0	20.0	

Barrantan	Units		Daily				
Parameter		Week 1	Week 2	Week 3	Week 4	Week 5	Average
		3/1/2022	3/8/2022	3/15/2022	3/22/2022	3/30/2022	
Turbidity ⁴	NTU	1.3	2.2	3.4	2.8	2.7	2.5
Total Residual Chlorine ⁴	mg/L	ND	ND	ND	ND	ND	ND
Total Dissolved Solids	mg/L	358	544	245	236	233	323
Ammonia	mg/L	0.49	0.90	0.31	0.30	0.15	0.43
Total Kjeldahl Nitrogen	mg/L	0.95	0.96	0.66	0.58	ND	0.63
Nitrate-Nitrite	mg/L	0.26	0.43	0.24	0.25	0.16	0.27
Organic Nitrogen	mg/L	ND	ND	ND	ND	ND	ND
Phosphorus	mg/L	ND	ND	ND	ND	ND	ND
Ortho-Phosphorus mg/L		ND	ND	ND	ND	ND	ND
Biological Oxygen Demand	mg/L	ND	ND	ND	ND	ND	ND
Hardness	mg/L	181	312	144	121	113	174

Parameter	Unite	Effluent Concentration ⁵					Calculated Receiving Water Concentration ⁵					Water Quality Criteria ⁶		
Farameter	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5	Average	A	Ohmen in7	
		3/1/2022	3/8/2022	3/15/2022	3/22/2022	3/30/2022	3/1/2022	3/8/2022	3/15/2022	3/22/2022	3/30/2022	Average	Acute ⁴	Chronic ⁷
Antimony	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	***	640
Arsenic	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	340	150
Cadmium	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	0.94	0.43
Chromium ⁸	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	16	11
Copper	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	7	5
Lead	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	30	1.2
Nickel	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	260	29
Selenium ⁹	μg/L	6.4	ND	ND	ND	ND	0.0229	***	***	***	***	0.0046	***	5
Thallium	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	***	0.47
Zinc	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	65	65
Mercury	ng/L	ND	0.6	0.7	0.8	1.0	***	0.0020	0.0024	0.0030	0.0037	0.0022	1400	12

Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.
Daly Min and Daly Max are the lowest and highest values for any day in the month. Daly Avgi is the arithmetic average of all daly values during the entire month.
ND = Not Detected (below the lab's reporting limit).
Turbidity and total residual choine are monitored continuously. The value reported is the weekly maximum and the daily average is the average of the weekly maximum values reported.
Galvalated Receiving Water Concentration shows the effuent concentration at the discharge once it has fully invited in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are also in the dissolved form. Consident with Georgia EPD's makers and receiving water Concentrations for an appropriate comparison to the numeric water quality criteria is the maximum concentration of a parameter (calculated at a default hardness of 50 mg/L as calculated for the receiving waterbody.
Acute (short-term) water quality criterion to be compared with the weekly calculated receiving water concentration.
Numeric water quality criterion is hown is the thronic (long-term).
The numeric water quality criterion shown is the chronic (long-term).
The numeric water quality criterion shown is the chronic (long-term).
The numeric water quality criterion shown is the chronic (long-term).
The numeric water quality criterion shown is the chronic (long-term).
The numeric water quality criterion shown is the chronic (long-term).
The numeric water quality criterion shown is the chronic (long-term).
The numeric water quality criterion shown is the chronic (long-term).
The numeric wat

Plant Yates

Prepared by:

TETRATECH

Monthly Instream Results¹

March 2022

		Chattahoochee River ²							
Parameter ³	Units	3/1/2022	3/1/2022	3/15/2022	3/15/2022				
		Upstream	Downstream	Upstream	Downstream				
рН	SU	7.1	7.1	7.1	7.1				
TSS	mg/L	20.0	93.5	32.8	27.6				
O&G	mg/L	ND^4	ND	ND	ND				
TRC	mg/L	***	***	***	* * *				
Turbidity	NTU	31.2	23.1	23.8	25.9				
TDS	mg/L	48	50	58	46				
BOD	mg/L	ND	ND	ND	ND				
Antimony	μg/L	ND	ND	ND	ND				
Arsenic	μg/L	ND	ND	ND	ND				
Cadmium	μg/L	ND	ND	ND	ND				
Chromium	μg/L	ND	ND	ND	ND				
Copper	μg/L	ND	ND	ND	ND				
Lead	μg/L	ND	ND	ND	ND				
Mercury	ng/L	3.0	2.9	1.2	1.4				
Nickel	μg/L	ND	ND	ND	ND				
Selenium	μg/L	ND	ND	ND	ND				
Thallium	μg/L	ND	ND	ND	ND				
Zinc	μg/L	ND	ND	ND	ND				
Ammonia	mg/L	ND	ND	ND	0.11				
TKN	mg/L	0.76	0.80	0.68	ND				
Nitrate-Nitrite	mg/L	0.91	0.90	0.78	0.82				
Organic Nitrogen	Organic Nitrogen mg/L		0.80	0.63	ND				
Phosphorus	mg/L	ND	0.05	ND	ND				
Ortho-phosphorus	mg/L	ND	ND	ND	ND				
Hardness	mg/L	20	20	21	22				

1 Tetra Tech verifies the correct laboratory analysis methods were used.

2 Chattahoochee River measured 1000 ft upstream and 1000 ft downstream from the final discharge at Outfall 01.

3 Metals results are total recoverable.

4 ND = Non-detect

*** = Not Applicable

mg/L = milligrams per liter = parts per million; μ g/L = micrograms per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day