

Plant Yates Monthly Dewatering Results October 2019

	Units	Efflu	ent Concent	ration	Permit Limits			
Parameter		Daily Min ³	Daily Avg ³	Daily Max ³	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.0	0.81	1.01	***	***	***	
рН	SU	6.4	***	8.4	6.00	***	9.00	
Total Suspended Solids	mg/L	ND^2	ND	ND	***	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	***	15.0	20.0	

Parameter	Units		Daily				
		Week 1	Week 2	Week 2 Week 3		Week 5	Average
		10/2/2019	10/8/2019	10/16/2019	10/22/2019	10/29/2019	
Turbidity	NTU	1.3	1.4	2.5	4.6	2.8	2.5
Total Dissolved Solids	mg/L	252	265	262	248	244	254.2
Ammonia	mg/L	0.38	0.17	0.27	0.30	0.39	0.30
Total Kjeldahl Nitrogen	mg/L	0.7	ND	0.54	0.46	1.6	0.66
Nitrate-Nitrite	mg/L	0.89	1	0.88	0.81	0.84	0.89
Organic Nitrogen	mg/L	ND	ND	ND	ND	1.2	0.24
Phosphorus	mg/L	ND	ND	ND	ND	ND	ND
Ortho-Phosphorus	mg/L	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand	mg/L	ND	ND	ND	2.3	ND	0.5
Hardness	mg/L	116	110	115	117	136	119

Parameter Un	Unito	Effluent Concentration⁴					Calculated Receiving Water Concentration ⁴					Water Quality Criteria ⁵		
Farameter	Week 1 Week 2	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5	Average	A4 - 6	Chania ⁶
		10/8/2019	10/16/2019	10/22/2019	10/29/2019	10/2/2019	10/8/2019	10/16/2019	10/22/2019	10/29/2019 Avera	Average	Acute	Chronic ⁶	
Arsenic	μg/L	5.9	ND	ND	ND	ND	0.0090	***	***	***	***	0.0018	340	150
Cadmium	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	1	0.43
Chromium ⁷	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	16	11
Copper	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	7	5
Lead	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	30	1.2
Nickel	μg/L	10.9	ND	ND	ND	ND	0.0167	***	***	***	***	0.0033	260	29
Selenium ⁸	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	***	5
Zinc	μg/L	16.6	ND	ND	ND	ND	0.0254	***	***	***	***	0.0051	65	65
Mercury	ng/L	0.735	1.11	ND	ND	ND	0.0011	0.0017	***	***	***	0.0006	1400	12

- 1 Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.
- 2 ND = Not Detected (below the lab's reporting limit).
- 3 Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Avg is the the arithmetic average of all daily values during the entire month.
- 4 Calculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are also in the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations are not translated into Calculated Receiving Water Concentrations.
- Numeric Water Quality Criteria is the maximum concentration of a parameter (calculated at a default hardness of 50 mg/L as calcium carbonate) established for the receving waterbody that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Water Concentrations less than these criteria are protective of the waterbody.
- Acute (short-term) water quality criterion to be compared with the weekly calculated receiving water concentration; Chronic (long-term) water quality criterion to be compared with the average calculated receiving water concentration.
- 7 Numeric water quality criterion shown is for Hexavalent Chromium.
- 8 The numeric water quality criterion shown is the chronic (long-term) water quality criterion for selenium since this parameter does not have an acute (short-term) water quality criterion.
- *** = Not Applicable
 - mg/L = milligrams per liter = parts per million; $\mu g/L = micrograms$ per liter = parts per billion; ng/L = micrograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day

Monthly Instream Results¹

Plant Yates

October 2019

		Chattahoochee River ²							
Parameter ³	Units	10/8/2019	10/8/2019	10/22/2019	10/22/2019				
		Upstream	Downstream	Upstream	Downstream				
рН	SU	6.81	7.25	7.18	7.35				
TSS	mg/L	ND	7.0	ND	7.5				
O&G	mg/L	ND	ND	ND	ND				
Turbidity	NTU	4.0	4.0	7.4	6.2				
TDS	mg/L	125	138	81	79				
BOD	mg/L	ND	ND	ND	ND				
Arsenic	μg/L	ND	ND	ND	ND				
Cadmium	μg/L	ND	ND	ND	ND				
Chromium	μg/L	ND	ND	ND	ND				
Copper	μg/L	ND	ND	ND	ND				
Lead	μg/L	ND	ND	2	ND				
Mercury	ng/L	0.87	0.82	1.54	1.37				
Nickel	μg/L	ND	ND	ND	ND				
Selenium	μg/L	ND	ND	ND	ND				
Zinc	μg/L	11.8	10.6	16.7	11.8				
Ammonia	mg/L	0.12	ND	ND	ND				
TKN	mg/L	ND	ND	0.50	0.46				
Nitrate-Nitrite	mg/L	4.3	4.2	2.3	2.3				
Organic Nitrogen	mg/L	ND	ND	0.43	ND				
Phosphorus	mg/L	0.05	0.06	0.09	0.07				
Ortho-phosphorus	mg/L	0.03	0.03	0.03	0.03				
Hardness	mg/L	37	36	30	31				

- 1 Tetra Tech verifies the correct laboratory analysis methods were used.
- 2 Chattahoochee River measured 1000 ft upstream and downstream from the final discharge at Outfall 01.
- 3 Metals results are total recoverable.
- 4 ND = Non-detect

 $mg/L = milligrams per liter = parts per million; <math>\mu g/L = micrograms per liter = parts per billion;$

ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day